Publications

Detailed Information

Regularity estimates for measure data problems : 측도데이터를 가지는 방정식에 대한 정규화 추정값

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

박정태

Advisor
변순식
Major
자연과학대학 수리과학부
Issue Date
2018-02
Publisher
서울대학교 대학원
Keywords
variable exponentextrapolationregularityCalderon-Zygmund estimateReifenberg domainmeasure data
Description
학위논문 (박사)-- 서울대학교 대학원 : 자연과학대학 수리과학부, 2018. 2. 변순식.
Abstract
이 학위논문에서는 매끄럽지 않은 경계를 가지는 영역 하에서 측도데이터를 가지는 비선형 타원형 및 포물형 방정식에 대한 대역적인 칼데론-지그문트 유형의 추정값에 대하여 연구한다. 비선형성과 영역의 경계에 대한 최소한의 조건하에서 해의 그래디언트가 주어진 측도데이터의 극대함수와 대역적으로 동등한 적분가능성이 가지는 것을 증명함으로써 최적의 칼데론-지그문트 유형의 추정값을 입증한다. 우리는 변수지수 성장조건을 가지는 비선형 타원형 방정식, 가측 비선형성을 가지는 타원형 및 포물형 방정식에 대하여 각각 대역적인 칼데론-지그문트 유형의 추정값을 제시한다.
We establish global Calderon-Zygmund type estimates for nonlinear elliptic and parabolic equations in nonsmooth bounded domains when the right-hand side is a finite signed Radon measure.

We first investigate a quasilinear elliptic equation with variable growth. We obtain an optimal global Calderon-Zygmund type estimate for such a measure data problem, by proving that the gradient of a very weak solution to the problem is as globally integrable as the first order maximal function of the associated measure, up to a correct power, under minimal regularity requirements on the nonlinearity, the variable exponent and the boundary of the domain.

Secondly, we study a nonlinear elliptic equation with measurable nonlinearity. A global Calderon-Zygmund type estimate in variable exponent spaces is established under optimal regularity assumptions on the nonlinearity and the Reifenberg flatness of the boundary.

We finally consider a nonlinear parabolic equation with measurable nonlinearity. Under minimal regularity requirements on the nonlinearity and the boundary of the domain, we prove a global Calderon-Zygmund type estimate in weighted Orlicz spaces. As an application we obtain such an estimate in variable exponent spaces, which gives an alternative proof for this new result in the literature.
Language
English
URI
https://hdl.handle.net/10371/141147
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share