Browse

Effective Algorithm for Left Ventricle Segmentation in MRI
심장 MRI에서 좌심실 세분화를 위한 효과적인 알고리즘

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
이일규
Advisor
문병로
Major
공과대학 컴퓨터공학부
Issue Date
2018-02
Publisher
서울대학교 대학원
Keywords
Image processingleft ventricle segmentationartificial neural networkcardiac magnetic resonance imaging
Description
학위논문 (석사)-- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2018. 2. 문병로.
Abstract
The short-axis left ventricle segmentation of Cine MRI is a representative imaging analysis used as a medical care. It is difficult to obtain the same segmentation results when performing image analysis with a human hand. Time and effort are being consumed due to different segmentation results. The algorithm consists of two deep learning models proposed in this paper, it provides saving time and effort and also obtain same segmentation results always. The first model uses the selective search to detect the region of interest from irrespective size of image and obtain the center point of left ventricle by deep learning. The second model consists of applying
coordinate transformation to the image and finding the boundary of the endocardium and epicardium by deep learning. The number of patients used was 24, and totally 194 slices of Cine MRI were used. Among them, 19 were used for training and 5 were used for testing. deep learning for short-axis left ventricle segmentation and other algorithms were used to solve the problem, based on the analysis of the experimental results, we identify the problems and show the possibility.
Language
English
URI
https://hdl.handle.net/10371/141551
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Computer Science and Engineering (컴퓨터공학부)Theses (Master's Degree_컴퓨터공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse