Publications

Detailed Information

Encapsulation of Lactobacillus rhamnosus GG by Direct Spray Drying of Fermented Reconstituted Skim Milk : 발효 재수화 탈지유의 직접 분무 건조 공정을 통한 Lactobacillus rhamnosus GG의 캡슐화

DC Field Value Language
dc.contributor.advisor정동화-
dc.contributor.author김해-
dc.date.accessioned2018-05-29T03:44:50Z-
dc.date.available2018-05-29T03:44:50Z-
dc.date.issued2018-02-
dc.identifier.other000000149635-
dc.identifier.urihttps://hdl.handle.net/10371/141677-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 국제농업기술대학원 국제농업기술학과, 2018. 2. 정동화.-
dc.description.abstract고령화 인구 증가에 따라 정장 및 정균 효과, 과민성 대장 증후군(IBS)의 완화, 성인자폐증 개선, 알러지 개선, 염증 완화, 콜레스테롤 배출효과의 건강기능성을 지닌 프로바이오틱에 대한 관심이 높다. 프로바이오틱스 시장 규모는 2016년 350억 달러를 돌파했으며 2024 년까지 연평균 7.4 % 성장할 것으로 예상된다. 분말식품은 이러한 프로바이오틱을 고령화 인구에게 전달하기에 가장 경제적인 방법으로써, 일반적으로 de Man Rogosa Sharpe (MRS) medium에서 발효 후, cell recovery step을 거친 뒤 분무건조하여 생산한다. 특히 cell recovery step은 4,000 rpm, 10 min에서 원심분리하여 MRS를 제거하고 LGG pellet을 회수한 후 PBS에 재분산 한 뒤 다시 같은 조건에서 원심분리하고 상층액을 제거하여 얻은 LGG pellet을 새로운 30% total solid reconstituted skim milk (30% RSM)에 재분산하는 매우 복잡하고 여러 단계로 이루어져 있어서(rRSM′), 발효액을 직접분무건조공정을 통해 분무건조하는 것(fRSM)보다 비효율적이고, 비경제적이고, 발효폐기물의 발생으로 인해 비환경친화적이다. 재분산액에 첨가하는 drying aid는 열풍건조로 유발되는 heat, acid, osmloar stress로부터 LGG cell protective effect를 가지는 식품소재로서, 주로 skim milk powder (SMP), whey protein isolate, maltodextrin, starch, gum arabic, gelatin을 사용하는데, 그 중 SMP는 lactose의 수산기가 LGG의 세포막 인지질 이중층과 다량의 수소결합을 이루어 물리적 방어벽 역할을 하고, casein micelle 및 whey protein이 건조농축으로 인해 낮아진 pH에 대해 pH buffer 효과를 보이며, 값이 싸고, 쉽게 구할 수 있기 때문에 많이 사용되는 drying aid이다. Lactobacillus rhamnosus GG (LGG, ATCC53103)는 사람의 장내에서 항염 효과 및 아토피 개선 효과가 뛰어난 종으로서, 가장 많은 연구가 된 프로바이오틱 중 하나이다. LGG 분말의 제조에 spray drying을 사용했을 때 ① LGG의 hairy pili가 분무건조를 통한 캡슐화 효율을 향상시키고, ② LGG가 유전학적으로 건조와 연관되는 stress (heat, osmolar, acid accumulation)에 대해서 다른 probiotics (Bifidobacterium 속, Lactobacillus rhamnosus E800)와 비교했을 때 heat shock protein (HSP)의 발현으로써 그 저항성이 우수하고, ③ 건조 및 분말화 속도가 빠르고, ④ 전처리 및 별도의 분말화 과정이 필요 없어서 공정이 간소하고, 속도가 빠르기 때문에 가장 많이 사용되는 캡슐화 공정으로 분무건조공정이 사용된다. 위에서 설명한 일반적인 LGG 분말 제조법에 비해서 fRSM을 직접분무건조공정을 통해 분무건조 할 때 ① 공정의 간소화, ② LGG 발효산물의 섭취, ③ 산미로 인한 이미, 이취의 masking 혹은 flavoring 효과, ④ 버리는 배양액이 거의 없어서 친환경적인 장점이 있다. 그러나, 발효액의 직접분무건조공정에는 끈적임이 발생하여 건조 수율이 낮고, 기계 막힘으로 인해 공정이 중단 될 뿐만 아니라, LGG 생존율이 낮아지므로, 공정효율성 및 분말의 품질에 악영향을 미치는 치명적인 약점이 있다. 발효액에 drying aid로 SMP를 첨가하면, 앞서 설명한 LGG cell protective effect와 더불어 유리전이온도 증가 효과로 인하여 끈적임 현상이 덜 일어난다. LGG는 10% (w/w) 탈지분유, 2% (w/w) glucose, 그리고 1% (w/w) yeast extract를 넣고 만든 재수화 탈지유에서 42 °C, 100 rpm, 9 h의 조건으로 발효되었다. 그 후, 20% (w/w) SMP가 발효액에 첨가되고 25 °C에서 30분간 완전히 분산되었다. 분무건조는 feed flow rate가 800 mL/h, feed atomization pressure가 100 kPa, 그리고 hot air flow rate가 0.65 m3/min이며, inlet 온도가 150–160 °C, outlet 온도가 80 °C로 유지되어 수행했다. SMP를 발효액에 첨가하여 끈적임 현상이 덜 나타나는 메커니즘을 확인하기 위해 분무건조수율, LGG 생존율, shear stress-shear rate relationship을 feeding suspension에서 확인하였고, LGG powder에서는 유리전이온도, 등온흡습곡선, 그리고 미세구조를 분석하였다. SMP를 첨가하면서, fRSM의 pH가 3.9에서 5.2로 증가하면서 consistency index (k)가 0.0066 Pa·sn에서 0.0583 Pa·sn으로 약 9배 이상 증가하였고, 유리전이온도 (Tg)는 55.75 oC에서 62.13 oC로 증가하였다. 이는 SMP가 casein aggregated structure 사이에 끼어들어 물분자의 움직임에 제한을 둔 효과로 보이며, 그로 인해 분사된 droplet의 유리전이까지 걸리는 시간이 단축된 효과로 보인다. Tg가 증가한 효과로, 건조수율이 0% (끈적임 현상으로 인함)에서 36.1%로 증가하였고, LGG 생존율도 0.59%에서 24.71%로 증가하였다. 이는 SMP로 인해 낮아진 droplet 내의 분자이동도가 LGG까지의 heat transfer 및 LGG가 droplet의 표면에 도달하는 빈도를 낮춘 효과로 보인다. 이 효과는 rRSM′에서의 건조수율이 35.77%이고, LGG 생존율이 26.30%인 것과 비교하였을 때 기존의 공정을 대체할만한 공정효율성 및 분말의 품질을 충족시키는 것으로 판단된다. 단순히 SMP를 첨가하는 것으로, 분무건조 시 유리전이까지 걸리는 시간이 단축되어 fRSM에서의 끈적임 문제점을 해결했고, 더불어 fRSM의 직접분무건조공정이 가능하게 됨으로써, 더욱 간단하고 친환경적인 공정으로써 LGG를 캡슐화하였다. 이 연구의 내용은 (1) 분무건조에서 발생하는 끈적임 현상이 나타나는 메커니즘에 대한 정보를 제공하여 더 넓은 범위의 식품소재를 분무건조할 수 있는 점, (2) LGG를 사용한 발효액을 분무건조하는 데 발생하는 끈적임 현상의 메커니즘을 제공한 점, (3) fRSM에 SMP를 첨가하여 끈적임 현상으로 인한 문제를 해결한 메커니즘을 제공한 점에서 식품산업에 기여할 수 있다.-
dc.description.abstractAs the aging population increases, there is a strong interest in probiotics with health functional properties such as effect of killing pathogen and preventing toxic compounds secreted from pathogen, relieving irritable bowel syndrome (IBS), alleviation of adult autism, decrease the degree of allergy, anti-inflammation and cholesterol emission. The probiotic market size has surpassed $ 35 billion in 2016 and is expected to grow at an annual average of 7.4% by 2024 due to their health functionalities. Encapsulation by spray drying is an economical way to deliver probiotics to human. A common probiotic encapsulation process by spray drying consists of three consecutive steps: fermentation, cell recovery, and spray drying. Fermentation has been often conducted with de Man Rogosa Sharpe (MRS) medium but also frequently performed with reconstituted skim milk (RSM) due to the lactose molecules as forming a physical barrier on the cell membrane, and milk proteins as a pH buffering effect to protect the probiotics from the lactic acid during fermentation and spray drying. Direct spray drying of fermented RSM (fRSM) could provide advantages such as ingestion of the fermented product, eco-friendly and simplified process-
dc.description.abstracthowever, it has been rarely adopted probably due to the stickiness problem that occurs adversely affects the productivity and quality of the products. In this study, Lactobacillus rhamnosus GG (LGG, ATCC53103), a well-known probiotic, was fermented in RSM and directly spray dried for its encapsulation. Skim milk powder (SMP) was added to the fRSM after fermentation to reduce the stickiness by increasing glass transition temperature (Tg), and its effects on the efficiency of spray drying and the properties of encapsulated powder were examined. LGG was fermented with 10% RSM containing 2% glucose and 1% yeast extract at 42 °C, 100 rpm for 9 h. After the fermentation, SMP was added to the fRSM at a concentration of 20% (w/v) and dispersed at 25 °C for 30 min by using magnetic stirrer. The suspension was spray dried at a feed flow rate of 800 mL/h, feed atomization pressure of 100 kPa, and hot air flow rate of 0.65 m3/min with inlet and outlet temperatures of 150–160 °C and 80 °C, respectively. The spray drying yield, the survival ratio of LGG, the shear stress-shear rate relationship of the suspension, and Tg, moisture sorption isotherm, and microstructure of spray-dried encapsulated powder were analyzed to confirm the mechanism regarding the way that solves stickiness problem by adding SMP to fRSM, and the pH of fRSM increased from 3.9 to 5.2, and the shear stress-shear rate relationship was revealed as having shear-thinning behavior. After the adding SMP to fRSM, the consistency index (k) was increased from 0.0066 to 0.0583 Pa·sn, and Tg was increased from 55.75 to 62.13 °C. It seems that skim milk solids enter between the interstices of the casein aggregated structure of fRSM, therefore the movement of water molecules was limited, and the time it takes for the spray drying droplets to glass transition was reduced. As a result of increased Tg, spray drying yield was also increased from 0 (caused by stickiness problem) to 36.1%. In addition, the survival ratio of LGG improved from 0.59 to 24.71%. As the added SMP limits the molecular mobility of fRSM resulting LGG cells reaching the surface of the droplets was lowered and the degree of heat transfer to the inside of the droplets seemed to be reduced, too. It is noteworthy that the drying yield of 35.77% and survival ratio of 26.30% of the powder obtained from rRSM′ were not significantly different from those in fRSM-SMP. Simple addition of SMP significantly improved the efficiency of spray drying by solving the stickiness problem via faster glass transition shift than in fRSM, thus enabled the direct spray drying which is simpler and ecofriendly process as a promising process for encapsulating LGG. This investigation could contribute to the food industry-
dc.description.abstract(1) by enabling a wide range of food materials to be used for spray drying by providing information on mechanisms for solving stickiness problems during spray drying, (2) Identification of stickiness mechanism during spray drying of fermented milk using LGG, (3) The mechanism that alleviates stickiness when SMP was added into the fRSM.-
dc.description.tableofcontentsChapter 1. Research background 2
1. Probiotics 2
2. Lactobacillus rhamnosus GG 3
2.1. Health functionality 3
2.2. Stress resistance during the spray drying process 4
3. Probiotics encapsulation processes by spray drying 7
4. Stickiness phenomenon during spray drying 9
5. Control of stickiness during spray drying 10
5.1. Process based approach 10
5.2. Material science based approach 10
6. Overall objectives 13

Chapter 2. Effect of the adding SMP on LGG encapsulation during spray drying 16
Introduction 16
Materials and Methods 17
1. Fermentation of LGG 17
1.1. Selection of LGG growth media 17
2. Optical density of the LGG culture 18
3. Survivability of LGG 18
3.1. Viable cell count of LGG in the feeding suspensions 18
3.2. Viable cell count of LGG in the LGG powders 18
3.3. Survival ratio of LGG 19
4. Preparation of feeding suspensions 19
5. Physicochemical properties of feeding suspensions 19
5.1. pH 19
5.2. Electrophoretic mobility 21
5.3. Particle size 21
5.4. Shear stress-shear rate relationship 21
6. Spray drying 22
7. Drying yield 22
8. Moisture content 23
9. Water activity 23
10. Particle size distribution using backscattering 23
11. Microstructure 23
12. Moisture sorption isotherm 24
13. Equilibrium moisture content of LGG powders 24
14. Glass transition temperature 24
15. Sticky point temperature 26
Results and Discussion 28
1. Physicochemical properties of feeding suspensions 28
1.1. pH 28
1.2. Shear stress-shear rate relationship 28
2. Microstructure of feeding suspension 29
3. The efficacy of the direct spray drying of fRSM as compared to the traditional process 29
3.1. Drying yield 29
3.2. Microbial survival ratio 33
3.3. LGG powder quality 33
4. The effect of adding SMP to fRSM on the spray drying 33
4.1. Drying yield 33
4.2. Microbial survival ratio 33
4.3. LGG powder quality 34
5. The mechanism governing the performance of the consecutive LGG encapsulation process with adding SMP to fRSM 34
5.1. Glass transition 34
5.2. The changes in the lactose hydration property 35
5.2.1. Microstructure 35
5.2.2. Particle size and moisture sorption isotherm 35
5.3. Degrees of stickiness during spray drying and storage stability 38
Conclusions 49

Chapter 3. Effect of pH on LGG encapsulation during spray drying 50
Introduction 50
Materials and Methods 51
1. Fermentation of LGG 51
2. Survivability of LGG 51
2.1. Viable cell count of LGG in the feeding suspensions 51
2.2. Viable cell count of LGG in the LGG powders 52
2.3. Survival ratio of LGG 52
3. Preparation of feeding suspensions 52
4. Physicochemical properties of feeding suspensions 53
4.1. pH 53
4.2. Electrophoretic mobility 53
4.3. Particle size 53
4.4. Shear stress-shear rate relationship 53
5. Spray drying 54
6. Drying yield 54
7. Moisture content 54
8. Water activity 54
9. Particle size distribution using backscattering 55
10. Microstructure 55
11. Moisture sorption isotherm 55
12. Glass transition temperature 55
13. Sticky point temperature 56
Results and Discussion 57
1. Physicochemical properties of feeding suspensions 57
2. Microstructure and physical characteristics of LGG powders 57
3. The pH effect of fRSM on the spray drying 57
3.1. Drying yield 57
3.2. Microbial survival ratio 61
3.3. LGG powder quality 61
4. The mechanism governing the performance of the consecutive LGG encapsulation process with the pH adjustment of fRSM 61
4.1. Glass transition 61
4.2. The changes in the lactose hydration property 62
4.2.1. Microstructure 62
4.2.2. Moisture sorption isotherm 63
4.3. Degrees of stickiness during spray drying and storage stability 63
Conclusions 72
References 73
Abstract in Korean 81
-
dc.formatapplication/pdf-
dc.format.extent3712491 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectEncapsulation-
dc.subjectLactobacillus rhamnosus GG-
dc.subjectFermentation-
dc.subjectSkim milk-
dc.subjectSpray drying-
dc.subjectStickiness-
dc.subjectGlass transition-
dc.subject.ddc631-
dc.titleEncapsulation of Lactobacillus rhamnosus GG by Direct Spray Drying of Fermented Reconstituted Skim Milk-
dc.title.alternative발효 재수화 탈지유의 직접 분무 건조 공정을 통한 Lactobacillus rhamnosus GG의 캡슐화-
dc.typeThesis-
dc.contributor.AlternativeAuthorHae Kim-
dc.description.degreeMaster-
dc.contributor.affiliation국제농업기술대학원 국제농업기술학과-
dc.date.awarded2018-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share