Publications

Detailed Information

Study on sulfomethylation of kraft lignin for use as a superplasticizer : 크라프트 리그닌의 유동화제 사용을 위한 설포메틸레이션 반응 연구

DC Field Value Language
dc.contributor.advisor최인규-
dc.contributor.author김종찬-
dc.date.accessioned2018-05-29T03:57:13Z-
dc.date.available2018-05-29T03:57:13Z-
dc.date.issued2018-02-
dc.identifier.other000000150724-
dc.identifier.urihttps://hdl.handle.net/10371/141796-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 농업생명과학대학 산림과학부, 2018. 2. 최인규.-
dc.description.abstract크라프트 펄핑 공정으로부터 생산되는 많은 양의 크라프트 리그닌은 연소과정을 통해 태워지고 있다. 그러나, 크라프트 리그닌의 고부가가치화의 가능성이 제시되고 있다. 설파이트 펄핑으로부터 생산되는 리그노설포네이트는 시멘트 첨가제로 사용되고 있지만, 설파이트 펄핑이 크라프트 펄핑으로 대체되고 있기 때문에 생산량이 한정적이다. 이러한 이유로 크라프트 리그닌의 화학적 개질을 통해 리그노설포네이트를 대체하려는 연구가 많이 진행되고 있다.
본 연구에서는 formaldehyde와 sodium sulfite를 사용하여 크라프트 리그닌의 sulfomethylation을 다양한 조건 하에 진행하였다. 용매는 sodium hydroxide를 사용하였다. 그 후에 최종 pH를 1M 황산용액을 사용하여 조절하였고, 12000 rpm으로 15분동안 원심분리를 하여 고상과 액상을 분리하였다. Sulfomethylation은 최종 pH (7, 5, 2), 반응온도(80, 100, 120℃), 반응시간(1, 3, 5, 8, 11시간), 리그닌 대비 투입 시약 비율(0.225, 0.45, 0.9, 1.2:1)에 따라 다르게 진행이 되었다. Particle charge detector와 적정제로 polydiallyldimethylammonium (PolyDADMAC)를 사용하여 sulfomethylation된 크라프트 리그닌의 전하밀도를 측정하였다. 그 후, 동결건조를 통해 건조된 시료를 얻었다. FT-IR 분석법으로 리그닌의 작용기변화를 확인하였고, guaiacyl과 syringyl 구조의 비율은 31P-NMR로 측정하였다. 또한, 설포네이트의 함량 비교를 위해 원소분석을 실시하였고, 이러한 분석을 통해 개질 조건에 따른 sulfomethylation의 특성을 비교하였다.
최대 전하밀도를 나타내는 조건은 최종pH 5, 반응온도 100℃, 반응시간 5시간, 리그닌 대비 투입 시약 비율 0.9:1이었다. 반면, 최종 pH 5, 반응온도 100℃, 반응시간 3시간, 리그닌 대비 투입 시약 비율 0.45:1일 때, 시멘트 유동성이 최대였다. 전하밀도가 증가할수록 시멘트 유동성이 증가할 것이라고 예상했지만, 전하밀도와 시멘트 유동성의 경향은 일치하지 않았다. 또한, 시료의 황 함량과 전하밀도, 시멘트 유동성과의 경향도 일치하지 않았다. 몇몇 연구에 따르면, 높은 분자량, 낮은 전하밀도, 비교적 긴 사실구조를 가진 polycarboxylate와 낮은 분자량과 높은 전하밀도를 가진 sulfonated naphthalene formaldehyde condensate(SNFC)과 비교하였다. 그 결과, 시멘트 유동성은 polycarboxylate를 사용하였을 때 더 좋았다. 더 나아가, 리그노설포네이트를 분자량마다 나누어 시멘트 유동성을 분석한 결과, 분자량과 시멘트 유동성은 비례하지 않았다. 전하밀도와 분자량이 시멘트 유동성과 비례관계가 아닌 것을 고려해보았을 때, 긴 사슬구조가 시멘트 유동성의 핵심 인자라고 사료된다.
리그닌 구성단위의 반응에 대한 영향을 조사하기 위해, 침엽수 크라프트 리그닌을 활엽수 크라프트 리그닌과 같은 반응 조건으로 sulfomethylation을 하였다. Sulfomethylation이 된 침엽수 크라프트 리그닌이 활엽수 크라프트 리그닌보다 더 높은 전하밀도와 시멘트 유동성을 나타내었다.
-
dc.description.abstractThe large amount of kraft lignin has been produced from kraft pulping and incinerated to be converted to energy. However, kraft lignin has a possibility to be used as more value-added material via chemical modification. Lignosulfonate produced by sulfite pulping is used as a superplasticizer, but the production of lignosulfonate has been dwindled because sulfite pulping has been substituted to kraft pulping. Therefore, there are a lot of efforts to substitute lignosulfonate to kraft lignin via a variety of chemical modification.
In this study, sulfomethylation of kraft lignin was conducted by using formaldehyde and sodium sulfite in sodium hydroxide solvent with various reaction conditions. And then, final pH was adjusted with sulfuric acid (1 M) followed by centrifugation (12000 rpm, 15 min) to separate liquid and solid phases. Dried-solid sample was obtained by freeze-drying. Sulfomethylation of kraft lignin was conducted at final pH (7, 5 and 2), reaction temperature (80, 100 and 120℃), reaction time (1, 3, 5, 8 and 11 h), the dosage molar ratio of reagents (formaldehyde and sodium sulfite) to lignin (0.225, 0.45, 0.9 and 1.2:1). A particle charge detector (PCD) was utilized to measure charge density of the sulfomethylated kraft lignin by using a titrant (polydiallyldimethylammonium, PolyDADMAC). By fourier-transform infrared (FT-IR) spectroscopy analysis, the changed functional group on lignin could be examined, and the different ratio of guaiacyl and syringyl group could be investigated by phosphorus-31 nuclear magnetic resonance (31P-NMR). Furthermore, elementary analysis was utilized to compare the content of sulfonate. Through these analyses, the characteristics of sulfomethylated lignin under different reaction conditions were compared.
As a result of this study, the reaction condition for the highest charge density was determined as pH 5 for final pH, 100℃ for reaction temperature, 5 h for reaction time and 0.9:1 for the dosage molar ratio of reagents to lignin. On the other hand, the maximum fluidity of cement was obtained at pH 5 for final pH, 100℃ for reaction temperature, 3 h for reaction time and 0.45:1 for the dosage molar ratio of reagents to lignin. It was anticipated that more charge density made workability of cement increase, but the tendency between charge density and fluidity of cement was not corresponded. Moreover, there was not proportional tendency among the content of sulfur, charge density and fluidity of cement. According to similar studies, polycarboxylate which had high molecular weight, low charge density and longer chain structure was compared to sulfonated naphthalene formaldehyde condensate (SNFC), which had low molecular weight and high charge density. As a result, cement fluidity was better in case of polycarboxylate. Moreover, the separation of lignosulfonate with different molecular weight was carried out, and viscosity of cement paste was not proportional to molecular weight. Considering charge density and molecular weight were not in proportional relation with fluidity of cement, longer chain structure may have been regarded as the key factor for high fluidity of cement.
To investigate the influence of constituent unit of lignin in sulfomethylation, softwood kraft lignin (SKL) was sulfomethylated in same reaction condition and compared to hardwood kraft lignin (HKL). SKL which had more guaiacyl group indicated higher charge density and fluidity of cement than HKL.
-
dc.description.tableofcontents1. Introduction 1
1.1. Lignin & technical lignin 1
1.2. Lignin as a superplasticizer 4
1.3. Obstacles of technical lignin 6
1.4. Objectives 7
2. Literature reviews 9
2.1. Precipitation of kraft lignin 9
2.2. Modification of kraft lignin 10
2.3. Sulfomethylation & sulfonation of technical lignin for a superplasticizer 11
3. Materials & methods 13
3.1. Materials 13
3.2. Sulfomethylation of kraft lignin 13
3.3. The measurement of fluidity of cement 15
3.4. Characteristics of sulfomethylated kraft lignin 15
3.4.1. Charge density analysis 15
3.4.2. Solubility of sulfomethylated kraft lignin in water 16
3.4.3. FT-IR spectrometer 16
3.4.4. Gel permeation chromatography (GPC) 16
3.4.5. 31P-NMR analysis 17
3.4.6. Elementary analysis 17
4. Results & discussion 19
4.1. Analysis of salts produced by side reaction 19
4.1.1. Comparison between SHKL with and without dialysis 19
4.1.2. The analysis of unreacted salts 25
4.2. Effect of each factor to charge density 27
4.2.1. Fianl precipitating pH 27
4.2.2. Reaction temperature 31
4.2.3. Reaction time 33
4.2.4. The dosage molar ratio of reagents to lignin 35
4.3. The reaction condition for the highest fluidity of cement 37
4.4. The relation among sulfur content, charge density and fluidity of cement 42
4.5. Comparison between SKL & HKL 48
4.5.1. Analysis of unreacrted SKL & HKL 48
4.5.2. Comparison of unreacted and sulfomethylated SKL & HKL 53
4.6. Comparison between SHKL & commercial lignosulfonate 57
5. Conclusion 61
6. References 63
-
dc.formatapplication/pdf-
dc.format.extent673036 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject리그닌-
dc.subjectsulfomethylation-
dc.subject전하밀도-
dc.subject시멘트 유동성-
dc.subject리그닌 개질-
dc.subject음전하-
dc.subject.ddc634.9-
dc.titleStudy on sulfomethylation of kraft lignin for use as a superplasticizer-
dc.title.alternative크라프트 리그닌의 유동화제 사용을 위한 설포메틸레이션 반응 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorJong-Chan Kim-
dc.description.degreeMaster-
dc.contributor.affiliation농업생명과학대학 산림과학부-
dc.date.awarded2018-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share