Publications

Detailed Information

Applications of Morphology-Controlled Semiconductor-Based Nanocomposites : 형태가 제어된 반도체 기반 나노복합체의 응용에 관한 연구

DC Field Value Language
dc.contributor.advisor장두전-
dc.contributor.author이재원-
dc.date.accessioned2018-11-12T00:53:55Z-
dc.date.available2018-11-12T00:53:55Z-
dc.date.issued2018-08-
dc.identifier.other000000151798-
dc.identifier.urihttps://hdl.handle.net/10371/143002-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 자연과학대학 화학부, 2018. 8. 장두전.-
dc.description.abstractChapter 1 reports a brief overview of semiconductor nanomaterials havnig peculiar optical and physical properties. Especially, theses novel features are strongly related to three crucial parameters such as shape, size, and surface conditions. Thus, the size and shape-dependent phenomenon of nanosized-materials are explained in detail. In addition, efficient synthetic approaches, as well as application strategies, to well-defined nanocrystals with controlled shape and size are also described.

Chapter 2 describes that SnO2/ZnS nanocomposites of SnO2 quantum dots (QDs)-deposited ZnS nanorods having highly enhanced photocatalytic activity and photostability have been fabricated via a facile two-step hydrazine-assisted hydrothermal process without involving any surface treatments. A rational synthesis of high-quality SnO2/ZnS heterojunction nanocomposites via a simple and friendly manner has been reported for the first time. Furthermore, The incorporation of SnO2 QDs increases the photocatalytic efficiency of ZnS nanorods due to the following reasons: high separation of photogenerated charge carriers owing to type II band configuration, direct contact at interfaces, increased active surface sites, and extended the light absorption range to the visible region. Thus, our prepared SnO2/ZnS nanocomposites are considered to have great potential for photodegradation nanocatalysts in the field of waste-water treatment.

Chapter 3 presents that Cu(I)-exchanged ZnS nanoadsorbents having highly efficient adsorption performances toward cationic dyes and heavy metals have been fabricated via facile cation exchange using pristine ZnS nanostructures as templates. Their surface properties such as surface charges and areas have been controlled by adjusting the molar ratio of Cu to Zn (RCu/Zn). The adsorption efficiency of Cu-exchanged ZnS nanoadsorbents is highest at a RCu/Zn value of 0.4 because the net surface charges of the nanocomposites resulting from the substitution of Cu(I) ions for Zn(II) ions in the ZnS lattice are electronically most negative. Furthermore, the adsorption of cationic dyes to our nanoadsorbents is found to be mainly driven by attractive electrostatic interactions while van der Walls forces also play a role. Overall, our prepared Cu-exchanged ZnS nanoadsorbents are suggested to have great potential applicability in the treatment of wastewater containing cationic dyes or heavy metals.

In Chapter 4, the thickness and the morphologies of silver nanoshells have been tuned facilely and eco-friendly via laser irradiation. The irradiation of nanosecond laser pulses has transformed silver seeds or nanoparticles adsorbed to the silica surfaces of Ag@SiO2 nanostructures into silver nanoshells, producing Ag@SiO2@Ag nanostructures having highly enhanced catalytic performances. The catalytic degradation of rhodamine B has been found to occur on silver nanoshells (k1 process) or on core silver nanospheres (k2 process)
-
dc.description.tableofcontentsTable of Contents



Abstract of Dissertation



List of Figures and Tables 9



Chapter 1. General Introduction 16

1.1. Physical Properties of Nanosized Materials 17

1.2. Fabrication and Morphology Control of Nanostructures 21

1.3. Applications of Nanomaterials 31

1.4. References 37



Chapter 2. Highly Efficient Photocatalytic Performances of SnO2-Deposited ZnS Nanorods Based on Interfacial Charge Transfer 40

2.1. Abstract 41

2.2. Introduction 43

2.3. Experimental Details 46

2.4. Results and Discussion 49

2.5. Conclusion 67

2.6. Acknowledgements 68

2.7. References 68



Chapter 3. Facile Fabrication of Cu-Exchanged ZnS Nanoadsorbents

for Highly Efficient Removal of Contaminants 73

3.1. Abstract 74

3.2. Introduction 76

3.3. Experimental Details 78

3.4. Results and Discussion 82

3.5. Conclusion 100

3.6. Acknowledgements 101

3.7. References 101



Chapter 4. Highly Efficient Catalytic Performances of Eco-Friendly Grown Silver Nanoshells 106

4.1. Abstract 107

4.2. Introduction 108

4.3. Experimental Details 112

4.4. Results and Discussion 114

4.5. Conclusion 128

4.6. Acknowledgements 130

4.7. References 130



Chapter 5. Silica-Coated Silver/Gold Composite Nanoboxes Having Enhanced Catalytic Performances and Reusability 134

5.1. Abstract 135

5.2. Introduction 136

5.3. Experimental Details 139

5.4. Results and Discussion 141

5.5. Conclusion 154

5.6. Acknowledgements 155

5.7. References 155



Appendices 159



A.1. List of Publications 159

A.2. List of Presentations 160

A.2.1. International Presentations 160

A.2.2. Domestic Presentations 161



Abstract (Korean) 163
-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject.ddc540-
dc.titleApplications of Morphology-Controlled Semiconductor-Based Nanocomposites-
dc.title.alternative형태가 제어된 반도체 기반 나노복합체의 응용에 관한 연구-
dc.typeThesis-
dc.description.degreeDoctor-
dc.contributor.affiliation자연과학대학 화학부-
dc.date.awarded2018-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share