Publications

Detailed Information

Elastohydrodynamics of hygroexpansive porous media: Swelling and coiling : 흡습성 다공 물질의 탄성 유체역학: 팽창 그리고 나선형 변형

DC Field Value Language
dc.contributor.advisor김호영-
dc.contributor.author하종현-
dc.date.accessioned2018-11-12T00:56:20Z-
dc.date.available2018-11-12T00:56:20Z-
dc.date.issued2018-08-
dc.identifier.other000000152588-
dc.identifier.urihttps://hdl.handle.net/10371/143102-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2018. 8. 김호영.-
dc.description.abstractWe study fundamental mechanism and mechanics of hygroscopic deformation of soft porous materials. We first explore wicking in hygroscopic swelling porous media, in particular a cellulose sponge with heterogeneous porosity. We theoretically and experimentally investigate the capillary imbibition of various aqueous solutions in the sponge that isotropically swells at the same time. We find that the rate of liquid rise against gravity deviates from the classical Lucas-Washburn rule beyond a certain threshold height. The observation using the environmental scanning electron microscopy (ESEM) reveals the coalescence of microscale wall pores with wetting, which allows us to develop a mathematical model for pore size evolution and the consequent wicking dynamics. We rationalize the power law of the rise height versus time by combining Darcy's law with a hygroscopic swelling equation. The scaling law constructed through this work agrees well with the experimental results, which can build a theoretical framework to understand the physics of water absorption in hygroscopic responsive soft materials.

Secondly, we study a coiling movement of hygroexpansive an-isotropic materials. As a botanical inspiration, we consider a \textit{Pelargonium} seed awn that can generate helical motions in response to humidity change. The mechanism of its helical morphing is due to the anisotropic expansion in the multilayer structures. To predict the entire helix shape of the awn, we develop and corroborate a theoretical model. We further fabricate hygroresponsive helical actuators by electrospinning to mimic the botanical motion. We anticipate our work will shed light on kinematics of helical motion of the laminated plates and provide an essential design parameter of tunable helical motion actuator.
-
dc.description.tableofcontents1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Backgrounds and motivations . . . . . . . . . . . . . . . . . 2

2 Isotropic expansion: Poro-elasto-capillary wicking of celllulose sponges 5

2.1 Introduction and previous works . . . . . . . . . . . . . . . 6

2.2 Background theory . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Experiments of the wicking in cellulose sponges . . . . . . . 11

2.3.1 Two different wicking regimes . . . . . . . . . . . . . 11

2.3.2 Geometry and material properties of cellulose sponges 11

2.4 Capillary rise in nonswelling sponges . . . . . . . . . . . . . 16

2.5 Capillary rise in swelling sponges . . . . . . . . . . . . . . . 20

2.5.1 Macroscopic swelling . . . . . . . . . . . . . . . . . . 20

2.5.2 Growth of micropores . . . . . . . . . . . . . . . . . 21

2.5.3 Hygroscopic swelling in cellulose sheets . . . . . . . 29

2.5.4 Dynamics of wicking and swelling in late stages . . . 34

2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Anisotropic expansion: Helical motion of hygroexpansive materials 42

3.1 Introduction and previous works . . . . . . . . . . . . . . . 43

3.2 Investigation of hygroscopically responsive seed awn . . . . 45

3.2.1 Helical motion of the awn . . . . . . . . . . . . . . . 45

3.2.2 Geometry of the awn . . . . . . . . . . . . . . . . . . 47

3.3 Experimental analysis of hygroscopic soft actuators . . . . . 48

3.3.1 Fabrication of helical actuators . . . . . . . . . . . . 48

3.3.2 Forces measurements of helical materials . . . . . . . 50

3.4 Mechanical analysis of helical motion . . . . . . . . . . . . . 53

3.4.1 Formulation of laminated composite plates . . . . . 53

3.4.2 Energy equation of shell geometry . . . . . . . . . . 57

3.4.3 Kinematics of helical deformation . . . . . . . . . . . 58

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Concluding remarks 66

4.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 72

A Abstract in Korean 83
-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject.ddc621-
dc.titleElastohydrodynamics of hygroexpansive porous media: Swelling and coiling-
dc.title.alternative흡습성 다공 물질의 탄성 유체역학: 팽창 그리고 나선형 변형-
dc.typeThesis-
dc.description.degreeDoctor-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2018-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share