Publications

Detailed Information

Characteristics of O/W emulsion, protein-based particle and inclusion complex for the improvement of retinol stability and bioaccessibility : 레티놀 안정성과 생체접근률 향상을 위한 수중유적형 에멀션, 단백질 기반 입자, 포접 복합체의 특성

DC Field Value Language
dc.contributor.advisor김용노-
dc.contributor.author박희수-
dc.date.accessioned2018-12-03T01:36:53Z-
dc.date.available2018-12-03T01:36:53Z-
dc.date.issued2018-08-
dc.identifier.other000000151706-
dc.identifier.urihttps://hdl.handle.net/10371/143689-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 농업생명과학대학 바이오시스템·소재학부(바이오시스템공학), 2018. 8. 김용노.-
dc.description.abstract레티놀은 지용성 비타민인 비타민 A로, 항노화 기능을 나타낼 뿐만

아니라 항암, 항염증과 같은 유용한 생리활성을 갖는다. 하지만 물에

대한 낮은 용해도와 자외선 및 열에 쉽게 분해되기 때문 에 식품에

응용함에 제한이 따른다. 따라서, 본 연구는 레티놀의 안정성 및

생체접근률을 증가시킬 전달시스템 개발을 목적으로 한다. 전달

시스템으로는 O/W emulsion, 단백질 복합체, 환형아밀로스를

개발하고 레티놀에 최적화 시켜 안정성 및 생체접근률을 확인한다.

전달시스템의 조건은 O/W emulsion의 경우 유화제와 오일농도에

따라, 단백질 복합체는 stabilizer와 coating agent에 따라,

마지막으로 환형아밀로스는 농도에 따라 분석한다. 안정성은 UV, pH,

온도에 따른 저장안정성을, 레티놀의 잔류량으로 확인한다.

O/W emulsion내의 레티놀은 10wt% 이상의 오일농도의 조건에서

UV에 안정하다 (24시간 조사 시, 80% 잔류). Negative charge를

갖는 유화제를 사용한 조건에서는 수용액 상에 존재하는 미량의

금속이온과의 상호작용으로 인해 저장 안정성이 낮아진다 (WPI

사용시, 20% 잔류). 단백질 복합체 내의 레티놀은 다당류로 코팅한

경우에 loading efficiency가 90% 이상으로 유의적으로 높게

나타났다. pectin으로 코팅한 단백질 복합체에서 레티놀의 UV,

pH안정성이 가장 높았지만 잔류량이 약 20%에 그쳤다.

환형아밀로스 내의 레티놀은 phase solubility를 확인해본결과, 1:1의

비율로 결합하고, 환형아밀로스의 농도에 따라 UV 및 저장안정성의

차이는 나타나지 않았다 (p<0.05). UV 조사 시 레티놀의 잔류량은

약 50%였고, 온도에 따라서는 약 80% 이상이 잔류했다. 최종적으로,

레티놀의 생체접근률은 O/W emulsion에서 약 50%, 단백질 복합체와

환형아밀로스는 약 80% 이상으로 나타났다. 순수한 레티놀의

생체접근률이 20%에 불과한 것을 미루어보아 안정성 및

생체접근률이 크게 증가했음을 보여준다.

본 연구결과, O/W emulsion과 단백질 복합체 그리고

환형아밀로스는 레티놀을 포접하여, 안정성과 생체접근률을

향상시켜주는 전달시스템으로 효과적이라는 것을 알 수 있다. 이와

같은 결과에 따라, 각 전달시스템은 식품 및 화장품 산업에 활용도

높은 정보를 제공할 것으로 생각된다.
-
dc.description.abstractRetinol is a fat-soluble vitamin, vitamin A, which not only exhibits anti-aging

function, but also has useful physiological activities such as anti-cancer and antiinflammation.

However, it is difficult to apply to foods because of its low solubility

in water and instability in UV and heat. Therefore, this study aimed to develop

delivery systems to increase retinol stability and bioaccessibility. O/W emulsion,

protein complex and cycloamylose were developed and optimized for retinol as

delivery systems to improve its stability and bioaccessibility.

O/W emulsion, protein-based particle and cycloamylose, respectively, were

compared in terms of retinol stability and bioaccessibility as functional of emulsifier

type, coating agent type, and host material concentration. The stability of

incorporated retinol was analyzed under UV irradiation and storage at different

temperatures (4, 25, 40°C). Finally, bioaccessibility of retinol was estimated in each

delivery system with the most stable conditions.

UV stability of retinol in the O/W emulsion was significantly improved at an oil

concentration of 10 wt% or more. With anionic emulsifier, the storage stability of

retinol was lowered due to interaction with a trace amount of metal ion present in the

aqueous solution. When protein-based particles containing retinol were coated with

polysaccharide, the loading efficiency reached to more than 90%. Retinol was found

to have the highest UV and pH stability in protein-based particles coated with pectin.

Residual amount of retinol increased with cycloamylose during UV and storage test

periods regardless of cycloamylose concentration used in this study. Finally, when

using the delivery systems, the bioaccessibility of retinol was significantly improved

to at least 50% to 80% depending on the delivery systems, compared to less than 20%

for pure retinol.

This study showed that O/W emulsion, protein-based particle and cycloamylose

were effective delivery systems that improved retinol stability and bioaccessibility

by encapsulation. These delivery systems could be highly useful for the food and

cosmetic industry who utilize functional ingredients such as retinol.
-
dc.description.tableofcontentsABSTRACT …..………………………..……………………..……………….... I

CONTENTS .……………………………..………………………..…………... III

LIST OF TABLES ….………………………………………………..………. VIII

LIST OF FIGURES …………..……..…………………………..………........ IX

1. Introduction ……….………………………………………..…………….....1

2. Objectives …………………….…………………..……………………….....2

3. Background and Literature review ...........................................................3

3.1. Efficacy and unstable properties of retinol ………..……….………...3

3.2. Types and composition of emulsion ……………..…….…...……...4

3.2.1. Characteristics of O/W emulsion ……………...……………….....4

3.2.2. Characteristics of emulsifier ………………..………….…………5

3.3. Composition of protein based nanoparticles …….……...….........…..7

3.3.1. Hydrophobic characteristics of corn protein zein ….…………......7

3.3.2. Characteristics of sodium caseinate as a stabilizer …………...…..8

3.3.3. Characteristics of polysaccharides as a coating agent ……...….....9

3.4. Characteristics of cyclic glucans ………………………….…………11

3.5. Definition and necessity of bioaccessibility …….………………….13

4. Materials and Methods ………………………………………………...…15

4.1. Materials ………………………………………………………………..15

4.2. Methods …………….....………………………………………….….....16

4.2.1. Preparation and characteristics of retinol-loaded O/W emulsion

………………………………………………………………........16

4.2.1.1. Preparation of retinol-loaded O/W emulsion

………………………………………………….......…….….16

4.2.1.2. Characteristics of retinol-loaded O/W emulsion

…………………………………………………...……..……18

4.2.1.2.1. Particle size distribution and zeta potential

analysis………………………………..….…………18

4.2.1.2.2. Turbidity analysis of O/W emulsion …….....…...….18

4.2.1.3. Stability of retinol in O/W emulsion …….……………..…....19

4.2.1.3.1. UV stability …………………….………………..…19

4.2.1.3.2. Storage stability at different temperature ……..........19

4.2.1.4. Retinol contents analysis in O/W emulsion ……….……..…20

4.2.1.5. Statistical analysis ………………….………………….…..20

4.2.2. Preparation and characteristics of protein based nanoparticles

………………………………………………………………..….21

4.2.2.1. Preparation of retinol-loaded zein particles …….....……..…21

4.2.2.1.1. Preparation of retinol-zein complex nanoparticles

…………………………………………….…….….21

4.2.2.1.2. Preparation of polysaccharide coated nanoparticles

…………………………..…………….………........21

4.2.2.2. Characteristics of retinol-loaded zein particles ….............…22

4.2.2.2.1. Particle Size distribution and zeta potential

analysis…………………………………..……........22

4.2.2.2.2. Particle yield and loading efficiency analysis

…………………………………………..……….…22

4.2.2.2.3. Scanning electron microscopy (SEM)

…………………………………………...........…...24

4.2.2.2.4. Differential scanning calorimeter (DSC)

…………………………………………….…..…...24

4.2.2.2.5. Fourier transform infrared spectroscopy (FT-IR)

………………………………………………...…...25

4.2.2.3. Stability of retinol in zein particle ………….………...……26

4.2.2.3.1. pH stability ……………..…………………...…….26

4.2.2.3.2. UV stability ……………………..…………...……26

4.2.2.4. Retinol contents analysis in zein particles ……...………......27

4.2.2.5. Statistical analysis …………………………………...….......27

4.2.3. Preparation and characteristics of inclusion complexes of retinol

and cyclic glucans ……………………………….…….………...28

4.2.3.1. Preparation of retinol inclusion complexes ……....….……...28

4.2.3.2. Characteristics of retinol inclusion complexes ………...…...29

4.2.3.2.1. Phase solubility ……………….…………………....29

4.2.3.2.2. Differential scanning calorimeter (DSC) ….……….29

4.2.3.2.3. Fourier transform infrared spectroscopy (FT-IR)

……………………………………………………....30

4.2.3.2.4. Scanning electron microscopy (SEM) ………...…...30

4.2.3.3. Stability of retinol in inclusion complex ……….…………...31

4.2.3.3.1. UV stability ……………….………..………………31

4.2.3.3.2. Storage stability at different temperature ……...…...31

4.2.4. Bioaccessibility analysis for encapsulated retinol …….……..….32

4.2.4.1. Sample preparation ……………………………….………....32

4.2.4.2. In vitro digestion test ……………….……………….……....33

4.2.4.3. Bioaccessibility analysis for encapsulated retinol ………......34

5. Result and Discussion ……………………………………...……………..35

5.1. Characteristics and stability of retinol-loaded O/W emulsion

…………………………………………………………………..…….….35

5.1.1. Characteristics of retinol-loaded O/W emulsion ……….......…...35

5.1.1.1. Effect of emulsifier types in O/W emulsion ……….…….....35

5.1.1.2. Effect of oil concentration in O/W emulsion …….………....37

5.1.2. Stability of retinol in O/W emulsion ……………….………..….41

5.1.2.1. UV stability ……………………….………………………...41

5.1.2.2. Storage stability at different temperature ………………...…47

5.2. Retinol-loaded protein based nanoparticles ………….……..……...61

5.2.1. Characteristics of retinol-loaded zein particles ……………..…..61

5.2.1.1. Particle size distribution and zeta potential analysis ….........61

5.2.1.1.1. Effect of materials used in particle formation

………………………………………………...……61

5.2.1.1.2. Effect of freeze drying ……………….………….....63

5.2.1.2. Particle yield and loading efficiency analysis …………....…66

5.2.1.3. Scanning electron microscopy (SEM) ………………...……68

5.2.1.4. Differential scanning calorimeter (DSC) ………….……..…71

5.2.1.5. Fourier transform infrared spectroscopy (FT-IR) ……..….…73

5.2.2. Stability of retinol in zein particles ………………….………..…75

5.2.2.1. pH stability ………………….……………………..……..…75

5.2.2.2. UV stability ……………………………….………………...82

5.3. Characteristics and stability of inclusion complexes of retinol and

cyclic glucans …………………………………….……………......……84

5.3.1. Characteristics of retinol inclusion complexes …………………..84

5.3.1.1. Phase solubility …………………………………………...…84

5.3.1.2. Differential scanning calorimeter (DSC) …………………....86

5.3.1.3. Scanning electron microscopy (SEM) ……………………….87

5.3.1.4. Fourier transform infrared spectroscopy (FT-IR) ………....…93

5.3.2. Stability of retinol in inclusion complexes …………...……….....95

5.3.2.1. UV stability …………………………...………………..……95

5.3.2.2. Storage stability at different temperature ……...………….....97

5.4. Comparison of retinol stability using different delivery system

………………………………………………………………….................99

5.4.1. Stability of retinol in different delivery system …………………99

5.4.2. Bioaccessibility analysis for encapsulated retinol …………...…103

6. Conclusions …………………..…………………………………………...107

7. Summary ………………………………..…………………………….…..109

8. References ………………………………………………..……………….115
-
dc.formatapplication/pdf-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject.ddc660.6-
dc.titleCharacteristics of O/W emulsion, protein-based particle and inclusion complex for the improvement of retinol stability and bioaccessibility-
dc.title.alternative레티놀 안정성과 생체접근률 향상을 위한 수중유적형 에멀션, 단백질 기반 입자, 포접 복합체의 특성-
dc.typeThesis-
dc.description.degreeMaster-
dc.contributor.affiliation농업생명과학대학 바이오시스템·소재학부(바이오시스템공학)-
dc.date.awarded2018-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share