Publications

Detailed Information

Hidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials

DC Field Value Language
dc.contributor.authorRyoo, Ji Hoon-
dc.contributor.authorPark, Cheol-Hwan-
dc.creator박철환-
dc.date.accessioned2019-04-24T08:29:00Z-
dc.date.available2020-04-05T08:29:00Z-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.issued2017-05-
dc.identifier.citationNPG Asia Materials, Vol.9 No.5, p. e382-
dc.identifier.issn1884-4049-
dc.identifier.urihttps://hdl.handle.net/10371/147839-
dc.description.abstractIt was previously believed that the Bloch electronic states of non-magnetic materials with inversion symmetry cannot have finite spin polarizations. However, since the seminal work by Zhang et al. (Nat. Phys. 10, 387-393 (2014)) on local spin polarizations of Bloch states in non-magnetic, centrosymmetric materials, the scope of spintronics has been significantly broadened. Here, we show, using a framework that is universally applicable independent of whether hidden spin polarizations are small (e.g., diamond, Si, Ge and GaAs) or large (e.g., MoS2 and WSe2), that the corresponding quantity arising from orbital-instead of spin-degrees of freedom, the hidden orbital polarization is (i) much more abundant in nature since it exists even without spin-orbit coupling and (ii) more fundamental since the interband matrix elements of the site-dependent orbital angular momentum operator determine the hidden spin polarization. We predict that the hidden spin polarization of transition metal dichalcogenides is reduced significantly upon compression. We suggest experimental signatures of hidden orbital polarization from photoemission spectroscopies and demonstrate that the current-induced hidden orbital polarization may play a far more important role than its spin counterpart in antiferromagnetic information technology by calculating the current-driven antiferromagnetism in compressed silicon.-
dc.language영어-
dc.language.isoenen
dc.publisherNature Publishing Group-
dc.titleHidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials-
dc.typeArticle-
dc.identifier.doi10.1038/am.2017.67-
dc.citation.journaltitleNPG Asia Materials-
dc.identifier.wosid000402065300002-
dc.identifier.scopusid2-s2.0-85064008192-
dc.description.srndOAIID:RECH_ACHV_DSTSH_NO:T201708542-
dc.description.srndRECH_ACHV_FG:RR00200001-
dc.description.srndADJUST_YN:-
dc.description.srndEMP_ID:A079115-
dc.description.srndCITE_RATE:7.208-
dc.description.srndDEPT_NM:물리·천문학부-
dc.description.srndEMAIL:cheolhwan@snu.ac.kr-
dc.description.srndSCOPUS_YN:Y-
dc.citation.number5-
dc.citation.startpagee382-
dc.citation.volume9-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorPark, Cheol-Hwan-
dc.identifier.srndT201708542-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSPIN-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusCRYSTALS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Physics and Astronomy
Research Area Condensed Matter Physics, Nanoscale Photonics, Nanoscale Physics, 나노 물리와 나노 광자학, 응집 물질 물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share