Publications

Detailed Information

Molybdate attenuates lipid accumulation in the livers of mice fed a diet deficient in methionine and choline

Cited 10 time in Web of Science Cited 10 time in Scopus
Authors

Lee, Seungwoo; Nam, Ki-Hoan; Seong, Je Kyung; Ryu, Doug-Young

Issue Date
2018-08
Publisher
Pharmaceutical Society of Japan
Citation
Biological and Pharmaceutical Bulletin, Vol.41 No.8, pp.1203-1210
Abstract
Both lipid accumulation and oxidative stress are major pathologic contributors to the development of hepatic steatosis. Treatment with molybdate reduces hepatic levels of lipids in diabetic rats. Potential activities of molybdate as an antioxidant have also been demonstrated in various animal models. In the present study, we evaluated the effects of sodium molybdate dihydrate (SM) on hepatic steatosis and associated disturbances in a widely used mouse model of the metabolic disease. Male C57B1/6 mice at 10 weeks of age were fed a diet deficient in methionine and choline (MCD) and bottled water containing SM for four weeks. The SM treatment markedly attenuated MCD-induced accumulation of lipids, mainly triglycerides, in the liver. Lipid catabolic autophagic pathways were activated by SM in the MCD-fed mouse livers, as evidenced by a decreased level of p62 expression. MCD-induced oxidative damage, such as lipid and protein oxidation, was also alleviated by SM in the liver. However, the level of MCD-induced hepatocellular damage was not affected by SM. Taken together, these findings suggest that molybdate can be used in the treatment and prevention of hepatic steatosis without inducing adverse effects in the liver. To the best of our knowledge, this is the first experimental study to investigate the effects of molybdate in non-alcoholic fatty liver disease, and also the first that demonstrates molybdate-induced autophagy.
ISSN
0918-6158
Language
English
URI
https://hdl.handle.net/10371/149266
DOI
https://doi.org/10.1248/bpb.b18-00020
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share