Publications
Detailed Information
Stochastic model-predictive control for lane change decision of automated driving vehicles
Cited 119 time in
Web of Science
Cited 138 time in Scopus
- Authors
- Issue Date
- 2018-06
- Citation
- IEEE Transactions on Vehicular Technology, Vol.67 No.6, pp.4771-4782
- Abstract
- This paper describes lane change motion planning with a combination of probabilistic and deterministic prediction for automated driving under complex driving circumstances. The autonomous lane change should arrive safely at the destination. The subject vehicle needs to perceive and predict the behaviors of other vehicles with sensors. From the information of other vehicles, a collision probability is defined using a reachable set of uncertainty propagation. In addition, the lane change risk is monitored using predicted time-to-collision and safety distance to guarantee safety in lane change behavior. A safe driving envelope is defined as constraints based on the combinatorial prediction (probabilistic and deterministic) of the behavior of surrounding vehicles. To obtain the desired steering angle and longitudinal acceleration to maintain the automated driving vehicle under constraints, a stochastic model-predictive control problem is formulated. The proposed model has been evaluated by performing lane change simulations in MATLAB/Simulink, while considering the effect of combination prediction. Also, the proposed algorithm has been implemented on a test vehicle. The simulation and test results show that the proposed algorithm can handle complicated lane change scenarios, while guaranteeing safety.
- ISSN
- 0018-9545
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.