Publications

Detailed Information

Utilization of multiobjective optimization for pulse testing dataset from a CO2-EOR/sequestration field

Cited 13 time in Web of Science Cited 15 time in Scopus
Authors

Min, Baehyun; Sun, Alexander Y.; Wheeler, Mary F.; Jeong, Hoonyoung

Issue Date
2018-11
Publisher
Elsevier BV
Citation
Journal of Petroleum Science and Engineering, Vol.170, pp.244-266
Abstract
In a geological carbon storage project, leakage should be monitored to ensure safe long-term storage of injected CO2. Leakage can be detected early and cost-effectively by monitoring subsurface pressure. The uncertainty in geological models also needs to be sufficiently reduced to detect leakage based on pressure monitoring data. This study presents numerical results of field pulse testing experiments that are designed to detect leakage based on pressure monitoring data for periodical CO2 injection at a CO2 enhanced oil recovery field in Mississippi, USA. In the pulse test, sinusoidal pressure patterns are captured in transitional pressure data because CO2 injection and shut-in are repeated. The patterns are parameterized and history-matched efficiently in the frequency domain. Sensitivity analyses of pulse test parameters such as injection period and rate show that the frequency domain is more advantageous than the time domain for estimating leakage probability and well connectivity. We also conduct multi-objective history matching of pulse testing parameters in the frequency domain for reducing the uncertainty in geological models. This history matching reveals a clearer trade-off relationship between the matching qualities than conventional global-objective history matching, thereby being advantageous to yielding converged and diversified geological models for uncertainty quantification.
ISSN
0920-4105
Language
English
URI
https://hdl.handle.net/10371/149870
DOI
https://doi.org/10.1016/j.petrol.2018.06.035
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share