Publications

Detailed Information

Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer

Cited 26 time in Web of Science Cited 28 time in Scopus
Authors

Choi, Yuri; Kwon, Chae Hwa; Lee, Seon Jin; Park, Joonghoon; Shin, Jong-Yeon; Park, Do Youn

Issue Date
2018-07
Publisher
Nature Publishing Group
Citation
British Journal of Cancer, Vol.119 No.2, pp.230-240
Abstract
BACKGROUND: Fusion genes are good candidates of molecular targets for cancer therapy. However, there is insufficient research on the clinical implications and functional characteristics of fusion genes in colorectal cancer (CRC). METHODS: In this study, we analysed RNA sequencing data of CRC patients (147 tumour and 47 matched normal tissues) to identify oncogenic fusion genes and evaluated their role in CRC. RESULTS: We validated 24 fusion genes, including novel fusions, by three algorithms and Sanger sequencing. Fusions from most patients were mutually exclusive CRC oncogenes and included tumour suppressor gene mutations. Eleven fusion genes from 13 patients (8.8%) were determined as oncogenic fusion genes by analysing their gene expression and function. To investigate their oncogenic impact, we performed proliferation and migration assays of CRC cell lines expressing fusion genes of GTF3A-CDK8, NAGLU-IKZF3, RNF121-FOLR2, and STRN-ALK. Overexpression of these fusion genes increased cell proliferation except GTF3A-CDK8. In addition, overexpression of NAGLU-IKZF3 enhanced migration of CRC cells. We demonstrated that NAGLU-IKZF3, RNF121-FOLR2, and STRN-ALK had tumourigenic effects in CRC. CONCLUSION: In summary, we identified and characterised oncogenic fusion genes and their function in CRC, and implicated NAGLU-IKZF3 and RNF121-FOLR2 as novel molecular targets for personalised medicine development.
ISSN
0007-0920
Language
English
URI
https://hdl.handle.net/10371/149993
DOI
https://doi.org/10.1038/s41416-018-0153-3
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of International Agricultural Technology
  • Department of International Agricultural Technology
Research Area Epigenomic dynamics in stem cell differentiation, Knowledge-based target identification and validation of disease and economic traits, Nonclinical development of biopharmaceuticals

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share