Publications

Detailed Information

Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons

Cited 20 time in Web of Science Cited 24 time in Scopus
Authors

Hyung, Sujin; Im, Sun-Kyoung; Lee, Bo Yoon; Shin, Jihye; Park, Jong-Chul; Lee, Cheolju; Suh, Jun-Kyo Francis; Hur, Eun-Mi

Issue Date
2019-02
Publisher
John Wiley & Sons Inc.
Citation
GLIA, Vol.67 No.2, pp.360-375
Abstract
Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.
ISSN
0894-1491
Language
English
URI
https://hdl.handle.net/10371/150175
DOI
https://doi.org/10.1002/glia.23547
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share