Publications
Detailed Information
Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish
Cited 75 time in
Web of Science
Cited 78 time in Scopus
- Authors
- Issue Date
- 2019-03
- Publisher
- MDPI Open Access Publishing
- Citation
- Polymers, Vol.11 No.3, p. 498
- Abstract
- With various options of anti-wetting finish methods, this study intends to provide basic information that can be applied in selecting a relevant anti-wetting chemical to grant protection from spreading of liquids with different surface energy profiles. With such an aim, the anti-wetting effectiveness of fluorinated coating and silane coating was investigated for liquids having different surface energy components, water (WA), methylene iodide (MI) and formamide (FA). The wetting thermodynamics was experimentally investigated by analyzing dispersive and polar component surface energies of solids and liquids. The role of surface roughness in wettability was examined for fibrous nonwoven substrates that have varied surface roughness. The presence of roughness enhanced the anti-wetting performance of the anti-wetting treated surfaces. While the effectiveness of different anti-wetting treatments was varied depending on the liquid polarities, the distinction of different treatments was less apparent for the roughened fibrous surfaces than the film surfaces. This study provides experimental validation of wetting thermodynamics and the practical interpretation of anti-wetting finishing.
- ISSN
- 2073-4360
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.