Publications

Detailed Information

Formation of Multifunctional Hydrogels via Enzyme-mediated Crosslinking : 효소 매개 가교를 통한 다기능성 하이드로겔 제작

DC Field Value Language
dc.contributor.advisorHwang, Nathaniel Suk-Yeon-
dc.contributor.author김경민-
dc.date.accessioned2019-05-07T03:22:33Z-
dc.date.available2019-05-07T03:22:33Z-
dc.date.issued2019-02-
dc.identifier.other000000155766-
dc.identifier.urihttps://hdl.handle.net/10371/150843-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 공과대학 협동과정 바이오엔지니어링전공, 2019. 2. Hwang, Nathaniel Suk-Yeon.-
dc.description.abstractIn recent years, several attempts have been made to impart functionality to biomaterials in the field of tissue engineering. In particular, injectable form of hydrogels have many advantages such as ease of handling, in situ crosslinking, and being able to apply in 3D bioprinting applications. In this thesis, we demonstrate the synthesis of chitosan-based hydrogels containing Epigallocatechin gallate (EGCG) through recombinant tyrosinase from Streptomyces avermitilis (SA_Ty) that retains the anti-inflammation ability. Application of chitosan-EGCG (Chitosan-E) in wound healing application confirmed the regulation of the immune reaction due to the radical scavenging ability of hydrogel. Furthermore, we also present the synthesis of 3D printing hydrogel that can be crosslinked by SA-Ty by combining decellularized ECM and hyaluronic acid conjugated tyramine (HA_T).-
dc.description.abstract최근 조직공학 분야에서 다양한 재료에 기능성을 부여하는 시도들이 계속되고 있다. 특히 주사 가능한 하이드로겔은 상처 부위를 최소화할 수 있는 장점을 가지고 있어 꾸준히 연구되어 왔는데, 최근 들어 3D-프린팅 재료로서 사용될 수 있는 가능성 때문에 또다시 주목받고 있다. 우리는 녹차추출물인 Epigallocatechin gallate(EGCG)와 같은 기능성 분자 또는 다양한 생체신호 물질을 포함한 탈세포된 세포 외 기질을 이용해 주사 가능한 하이드로겔을 개발했다. Streptomyces avermitilis(SA_Ty)를 통해 EGCG를 산화시켜 제작한 키토산 기반 하이드로겔은 항 염증 능력을 가진다. 또한 상처 회복 모델을 통해 하이드로겔이 가지는 라디칼 소거 기능 때문에 면역반응이 조절되는 것을 확인했다. 또한 우리는 탈세포된 세포 외 기질과 Tyramine이 결합된 히알루론산을 적절히 배합하여 빠르게 가교 가능한 하이드로겔을 제작하였다. 종합하자면 우리가 제작한 하이드로겔은 상처 재생과 같은 질병에 효과적인 치료 효과를 보일 뿐 아니라 3D 프린팅 재료로서 사용 가능한 재료이다.-
dc.description.tableofcontentsTABLE OF CONTENTS

ABSTRACT ii
TABLE OF CONTENTS iv
CHAPTER ONE: TYROSINASE-MEDIATED CROSSLINKING OF POLYPHENOL FUNCTIONALIZED CHITOSAN FOR WOUND HEALING HYDROGEL 1
2.1 Introduction 1
2.2 Materials and methods 3
2.2.1 Synthesis of tyrosinase from Streptomyces avermitilis(SA-Ty) 3
2.2.2 Fabrication of chitosan hydrogel based on polyphenol 3
2.2.3 Rheological analysis of hydrogels 4
2.2.4 Measurement of Youngs modulus 4
2.2.5 Measurement of the swelling ratio of hydrogels 5
2.2.6 Scanning electron microscope(SEM) analysis 5
2.2.7 Measurement of EGCG releasing profile 6
2.2.8 Radical scavenging assays 6
2.2.9 Cell viability and proliferation test 7
2.2.10 In vitro, Anti-bacterial test 8
2.2.11 In vitro, Anti-inflammatory effects 8
2.2.12 In vivo, Wound healing model 9
2.2.13 Immunohistochemistry 9
2.2.14 Statistical analysis 10
2.3 Results 11
2.3.1 Synthesis and characterization of enzyme-mediated hydrogels 11
2.3.2 Mechanical and physical properties of hydrogels 12
2.3.3 Function of Chitosan-E hydrogels 12
2.3.4 In vivo, wound healing model 14
2.4 Discussion 15
CHAPTER TWO: SYNTHESIS OF DECELLULARIZED BRAIN ECM-BASED HYDROGEL FOR 3D-BIOPRINTING 18
3.1 Introduction 18
3.2 Materials and methods 20
3.2.1 Materials 20
3.2.2 Decellularization of porcine brain 20
3.2.3 Synthesis of tyramine-modified hyaluronic acid(HA_T) 21
3.2.4 Preparation of hydrogels 22
3.2.5 Rheological analysis 22
3.2.6 Swelling ratios analysis 23
3.2.7 Scanning electron microscopy(SEM) analysis 23
3.2.8 Measurement of Youngs modulus 23
3.2.9 Statistical analysis 24
3.3 Results & Discussion 25
3.3.1 Synthesis and characterization of decellularized ECM-based hydrogel 25
3.3.2 Mechanical and physical properties of hydrogels 25
3.3.3 Further work 26
REFERENCES 27
초록(국문요약) 30
LIST OF FIGURES AND TABLE 31
Figures 31
Figure 2.1 Three main component of tissue engineering 31
Figure 2.2 The overall scheme of polyphenol-functionalized chitosan hydrogels formed via an enzyme reaction 32
Figure 2.3 Mechanism of Chitosan-E hydrogels 33
Figure 2.4 Sol fraction of Chitosan-E hydrogels 34
Figure 2.5 Gelation of Chitosan-E hydrogels 35
Figure 2.6 Rheological analysis of Chitosan-E hydrogels 36
Figure 2.7 Mechanical properties of Chitosan-E hydrogels 37
Figure 2.8 Microstructure of Chitosan-E hydrogels 38
Figure 2.9 Releasing profile and function of hydrogel 39
Figure 2.10 Scheme of anti-bacterial test 40
Figure 2.11 Anti-bacterial ability of hydrogel 41
Figure 2.12 Biocompatibility of hydrogel 42
Figure 2.13 Inflammation modulation ability of hydrogel 43
Figure 2.14 Chitosan-E hydrogels injection model 44
Figure 2.15 Scheme of wound healing model and wound healing process 45
Figure 2.16 Wound closing images and ratio 46
Figure 2.17 Histology images 47
Figure 2.18 Immunohistochemistry of wound healing model 48
Figure 2.19 In vivo, vascularization in the wound area 49
Figure 3.1 Scheme for the synthesis of decellularized ECM-based hydrogel 50
Figure 3.2 Decellularization step 51
Figure 3.3 Characterization of decellularized ECM 52
Figure 3.4 Gelation images of decellularized ECM hydrogel 53
Figure 3.5 Rheological analysis of decellularized ECM hydrogel 54
Figure 3.6 Mechanical properties of decellularized ECM-based hydrogel 55
Figure 3.7 Scanning electron microscope image 56
Figure 3.8 Further work 57
Tables 58
Table 3.1 DNA quantification 58
Table 3.2 Youngs modulus of decellularized ECM-based hydrogel 59
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc660.6-
dc.titleFormation of Multifunctional Hydrogels via Enzyme-mediated Crosslinking-
dc.title.alternative효소 매개 가교를 통한 다기능성 하이드로겔 제작-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorKyungmin Kim-
dc.description.degreeMaster-
dc.contributor.affiliation공과대학 협동과정 바이오엔지니어링전공-
dc.date.awarded2019-02-
dc.identifier.uciI804:11032-000000155766-
dc.identifier.holdings000000000026▲000000000039▲000000155766▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share