Publications

Detailed Information

Physiological and pathophysiological roles of RAPGEF2/GEF26

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

허근정

Advisor
이승복
Major
자연과학대학 뇌인지과학과
Issue Date
2019-02
Publisher
서울대학교 대학원
Description
학위논문 (박사)-- 서울대학교 대학원 : 자연과학대학 뇌인지과학과, 2019. 2. 이승복.
Abstract
신경세포는 여러 세포기관을 미소세관에 기반하여 양방향으로 전달 할 수 있는 분극화 된 세포다. 이러한 신경세포의 구조 때문에 미소세관 안정화를 조절하는 기전을 이해하는 것은 운동 신경계질환을 치료하는데 있어 중요하다. 이 학위 논문은 미소세관 안정화를 조절하여 신경근 접합부의 성장과 세포사멸을 조절하는 RAPGEF2/GEF26 유전자 발견에 대한 연구내용으로 구성되어 있다. 본 연구는 BMP 신호전달을 통해 FMRPFutsch 를 조절하는 RAPGEF2/GEF26 의 기능적 역할과 산발적인 ALS 환자들을 대상으로 whole exome sequencing 을 수행하여 발견한 de novo RAPGEF2 변이인 E1357K 의 병원의 영향을 규명했다.

첫 번째 연구는 BMP 신호전달의 활성화를 억제하여 미소세관 안정화를 조절하여 시냅스의 성장과 신경세포 사멸을 조절하는 GEF26 (초파리 ortholog: RAPGEF2)의 시냅스에서의 역할에 관한 내용이다. 특히 GEF26 가 BMP receptors 의 endocytic internalization 를 조절하여 BMP receptor endocytosis 과정에서 역할을 한다는 것을 밝혔다. 또한 Gef26 가 Rap1 의 상위단계에 존재하며 시냅스 성장, 운동기능, 그리고 세포사멸을 조절한다는 것을 증명했다. 이 연구를 통해 저는 미소세관 안정화를 조절하는 GEF26 의 기능을 Gef26, Rap1, BMP 구성원들, 그리고 미소세관 관련 단백질 (MAP)의 유전학적 관계를 통해 새롭게 밝히는데 기여했다.

두 번째 연구는 산발적인 ALS 환자들을 대상으로 whole exome sequencing 을 수행하여 발견한 de novo RAPGEF2 (c.4069G>A
p.E1357K) 변이의 기능연구에 관한 내용이다. 이 연구에서, RAPGEF2 의 기능이 E1357K 변이에 의해 방해되면, 비정상적인 미토콘드리아의 형태, 활동 그리고 분배와 약해진 미세소관 안정화가 조사되었다. 특히 RAPGEF2E1357K 를 인위적으로 발현시킨 형진 전환 초파리의 distal axon 에서 약해진 미세소관 안정화를 따라 미토콘드리아의 수송에 결함이 있는 것을 확인했다. 또한 RAPGEF2-E1357K 을 발현시킨 세포에서 비정상적인 미토콘드리아의 기능과 형태는 세포사멸을 증가시킨다는 것을 확인했다. 이 연구를 통해 저는 RAPGEF2-E1357K 에 의한 gain-of-toxicity 가 미세소관 안정화를 약화시켜 미세소관에 의존해 있는 미토콘드리아의 수송을 방해하여 세포사멸과 운동기능을 저해하는 것이 아닌가 의심할 수 있었다. 따라서 제 학위논문은 미소세관 안정화를 유지하는 것이 신경세포의 생존능력에 얼마나 중요한 역할을 하는 것과 미소세관 안정화 조절이 신경계 질환의 치료표적으로 중요하다는 것을 증명한다.
Neurons are polarized cells, which allow all types of organelles to move bidirectionally based on microtubules (MTs). Because of the neuronal structure, understanding mechanisms of microtubule stability is signified for treatment of motor neuron diseases. This thesis is consisted of the research summary of the identification of the RAPGEF2/GEF26 gene, which regulates microtubule stabilization to control neuromuscular junction (NMJ) growth and neuronal cell survival. My researches focus on functional role of RAPGEF2/GEF26 in FMRP-Futsch pathway modulation via BMP signaling and the pathogenic effect of RAPGEF2 p.E1357K variant, which has newly identified from a sporadic amyotrophic lateral sclerosis (ALS) patient through the whole exome sequencing (WES) analysis.

The first part of my thesis is focused on synaptic role of the GEF26 (human ortholog of RAPGEF2), which governs microtubule stability via BMP signaling to inhibit synaptic growth and neuronal degeneration. Specifically, GEF26 reveals to play in BMP receptor endocytosis by modulating endocytic internalization of surface BMP receptors. In addition, I clearly proved that GEF26 acts as an upstream molecule of Rap1 to control NMJ growth, motor function and neuronal cell survival. From the study, I contribute to pinpoint the GEF26 loss-of-function in regulation of microtubule stability by scrutinizing genetic relations between GEF26, Rap1, BMP-related components, and microtubule-associated protein (MAP).

The second part of my thesis is focused on defining the function of a de novo RAPGEF2 variant (c.4069G>A
p.E1357K), which is discovered from whole exome sequencing analysis of sporadic ALS patients. In this study, abnormal morphology, activity and distribution of mitochondria, and decrease in microtubule stability were examined, when the RAPGEF2 function is disrupted by E1357K variant. In particular, defective mitochondrial distribution in distal axons was observed followed by the reduction of microtubule stability in transgenic flies expressing RAPGEF2-E1357K. Moreover, malfunction and aberrant morphology of mitochondria was confirmed to promote apoptotic cell death in RAPGEF2-E1357K expressing cells. From this research, I suspect that gain in toxicity due to RAPGEF2-E1357K variant weakens microtubule stability and microtubule-based trafficking of mitochondria, which leads to apoptotic cell death and motor dysfunction. Altogether, my thesis demonstrates that maintenance of microtubule stability is significant for neuronal survivability, which could contribute to find therapeutic target for treatment of neurological diseases.
Language
eng
URI
https://hdl.handle.net/10371/152786
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share