Amorphous Silica Nanoparticles Inhibit Gap Junctional Intercellular Communication via Mitogen-Activated Protein Kinase Pathway : 무정형 실리카 나노물질의 Gap junction의 세포간 신호전달 억제 기전에 대한 연구

Cited 0 time in Web of Science Cited 0 time in Scopus


Issue Date
서울대학교 대학원
Nanoparticlessilicagap junctional intercellular communicationCx43
학위논문(석사)--서울대학교 대학원 :의과대학 의학과,2019. 8. 강병철.
무정형 실리카 나노물질(Amorphous silica nanoparticles, SiNPs)은 많은 산업 분야에서 다양하게 사용되고 있다. 결정형 실리카 나노물질과 비교하여 SiNPs는 보다 안정적인 특성을 가지고 있기 때문에 식품첨가제, 화장품, 자동차 산업뿐만 아니라 약물/DNA 전달, 항암치료, 효소 고정화, 치과용 연마제와 같은 의학분야에도 사용되어 왔다. 그러나 나노물질의 독특한 물리적, 화학적인 특성이 체내에서 더 강한 독성을 유발할 수 있기 때문에 주의하여 사용되어야 하고, 최근 SiNPs의 독성에 대한 연구가 발표되고 있지만 아직 SiNPs의 발암성에 대한 연구는 부족하다. 본 연구는 WB-F344 rat liver epithelial cells에서 Gap junction의 세포간 신호전달(Gap junctional intercellular communication, GJIC)에 대한 실험을 통해 SiNPs의 발암성에 대한 영향을 평가하였다. SiNPs의 특성을 확인하기 위하여 투과 전자현미경(Transmission electron microscopy, TEM), 동적광산란법(Dynamic light scattering, DLS)으로 SiNPs의 크기를 측정하였다. SiNPs를 TEM으로 측정한 입자 지름은 각각 62.79±11.26nm 이었고, DLS로 측정한 유체역학적 크기(Hydrodynamic size)는 각각 69.35nm 이었다. 그리고 세포독성 실험을 하여 세포에 유의미한 독성이 없는 가장 높은 농도를 SiNPs 5,000µg/ml로 결정하였고 GJIC 실험에 이 농도를 처치하였다. GJIC 실험으로서 가장 먼저 시간의존적 SL/DT assay를 수행하였다. SiNPs는 처치 후 12시간째 37.75%만큼 GJIC를 가장 많이 억제하였다. 또한, SiNPs는 SL/DT assay, 면역형광 염색, 웨스턴 블롯 분석에서 용량 의존적으로 GJIC를 억제하였다. SiNPs는 ERK1/2와 MEK 활성효소를 용량의존적으로 인산화하였지만 PKC 활성효소는 인산화하지 않았다. 또한 ERK 1/2 inhibitor, MEK inhibitor를 전처치하였을 때 GJIC의 억제가 유의미하게 회복되었으나 PKC inhibitor의 전처치에 의해서는 회복되지 않았다. 결론적으로, 무정형 실리카 나노물질은 WB-F344 rat liver epithelial cells에서 MAPK pathway의 기전을 통해, GJIC를 억제한다고 판단된다. 무정형 실리카 나노물질은 현재 임상에서도 사용되고 있으므로 상대적으로 고농도의 무정형 실리카 나노물질이 GJIC를 억제한 본 연구를 참고하여 적정 용량을 임상적으로 사용하여야 한다.
Amorphous silica nanoparticles (SiNPs) are widely applied in various industries. Due to their relatively safe properties in comparison with crystalline silica nanoparticles, SiNPs have been used in medical field (such as targeted drug/DNA delivery, cancer therapy, enzyme immobilization, and dentistry as an abrasive agent) as well as food industry, cosmetics, and automotive industry. However, nanoparticles should be used with caution because of their unique physical and chemical characteristics. Some studies have revealed that SiNPs possess toxicity in recent years. Data on their potential toxicities are insufficient. Thus, the objective of this study was to focus on effects of SiNPs to gap junctional intercellular communication (GJIC) in WB-F344 rat liver epithelial cells. For characterization, SiNPs was measured by ransmission electron microscopy (TEM) and dynamic light scattering (DLS). Particle diameter of SiNPs measured by TEM was 62.79 ± 11.26 and hydrodynamic size of SiNPs measured by DLS was 69.35 nm. For GJIC experiment, the highest concentration that showed no significant cytotoxicity was determined to be 5,000µg/ml in cytotoxicity test. SiNPs inhibited dye transfer the most (by 37.75%) at 12 hours after treatment compared to negative control in time course study of scrape/loading dye transfer. Furthermore, SiNPs inhibited GJIC in a dose-dependent manner based on results of scrape/loading dye transfer, immunofluorescence staining, and western blot analysis. SiNPs phosphorylated ERK1/2 and MEK kinases, but not PKC kinases, in a dose-dependent manner. Inhibition of GJIC induced by SiNPs was significantly recovered by ERK1/2 inhibitor and MEK inhibitor, but not by PKC inhibitor. Taken together, these results suggest that SiNPs can activate a hierarchical kinase program of MAPK signaling and induce inhibition of GJIC in WB-F344 rat liver epithelial cells. SiNPs are currently applied in clinical use, so appropriate dose should be used clinically, referring to this study, in which relatively high concentrations of SiNPs inhibited GJIC.
Files in This Item:
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Dept. of Medicine (의학과)Theses (Master's Degree_의학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.