Browse

Architectural Effects of Hyperbranched Polyglycerol-Based Materials on the Miscibility and Plasticizing Performance in Poly(vinyl chloride) Blends
고차가지구조 폴리글리세롤 기반 물질의 분자구조가 폴리염화비닐 블렌드 내에서의 상용성과 가소화 성능에 미치는 영향

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
이규원
Advisor
곽승엽
Issue Date
2019-08
Publisher
서울대학교 대학원
Keywords
Hyperbranched PolyglycerolPoly(vinyl chloride)Green PlasticizerNanofillerSelf-Plasticization
Description
학위논문(박사)--서울대학교 대학원 :공과대학 재료공학부,2019. 8. 곽승엽.
Abstract
고차가지구조 폴리글리세롤(HPG)은 낮은 사슬엉킴, 높은 작용기 밀도, 우수한 생체적합성, 간단한 단일 용기 합성, 지속가능한 원료로부터 유래하는 단량체로 합성이 가능하다는 장점으로 인해 많은 관심을 받아왔다. 특히 HPG는 덴드리틱 구조와 더불어 유연한 사슬 분절로 인해 높은 분자운동성을 지닐 것이라 기대 받는다. 본 연구에서는, HPG 기반의 물질들을 합성하고 폴리염화비닐(PVC) 내에서의 가소화 효과를 평가하였다. 이를 위해, HPG 구조체를 포함하는 친환경 가소제, 나노필러, 자기 가소화 PVC를 개발하고, 이들의 구조-특성 상관관계에 대해 상세하게 연구하였다.
첫 번째로, 우수한 성능의 친환경 가소제로서 고차가지구조 폴리카프로락톤(hbPCL)을 개발하였다. 조정할 수 있는 분자 구조를 갖는 hbPCL은 HPG의 중합을 위한 단량체인 글리시돌을 분지화 단량체로 사용하여 간편하게 합성되었다. 일련의 hbPCL은 ε-카프로 락톤과 글리시돌의 단일 용기, 무용매 공중합을 통해 제조되었으며, 분자 구조는 글리시돌과 ε-카프로락톤의 몰비를 변화시킴으로써 쉽게 조절되었다. 또한, 공중합 동역학 연구를 통해 글리시돌이 ε-카프로락톤보다 반응성이 우세하며, 두 단량체가 개환된 후 HPG-코어를 지닌 성형 구조의 공중합체가 형성됨을 밝혀냈다. hbPCL의 결정화 능력은 가지구조의 도입에 따라 서서히 약해지고, 분자운동성은 부티르산 무수물에 의한 에스테르화에 의해 상당히 개선되며, 중간 수준의 가지화도에서 최대값을 나타냈다. 부틸 에스테르화 된 hbPCL(hbPCL-C4)은 PVC와 혼화성이 높았으며 그 혼합물은 PVC/비스(2-에틸헥실) 프탈레이트(DEHP)에 상응하는 뛰어난 연질성을 보였다. 특히 PVC/hbPCL-C4의 신장성은 높은 구조적 균질성으로 인해 PVC/DEHP보다 우수하였다. 또한 PVC/hbPCL-C4는 용액 추출 후 중량 감소가 PVC/DEHP보다 85% 이상 낮아 뛰어난 유출 안정성을 보였다.
두 번째로, 무독성이며 프탈레이트가 없는 연질 PVC를 제조하기 위해 말단 알킬화 고차가지구조 폴리글리세롤(alkyl-HPG)로 구성된 친환경 가소제를 개발하였다. 합성된 alkyl-HPG는 실온에서 투명한 액체이며 DEHP보다 상당히 낮은 휘발성을 나타냈다. 상용성 분석을 통해 alkyl-HPG의 말단 알킬화 및 고차가지구조가 PVC와의 상용성을 향상시키는 핵심 요소임을 밝혀냈으며, 말단 부틸화 HPG(HPG-C4)는 중합도에 관계없이 PVC와 우수한 상용성을 보였다. PVC/HPG-C4 필름은 PVC/DEHP 필름과 유사한 연질성 및 신장성을 나타냈다. 특히, 가장 작은 중합도를 지닌 가소제와 혼합한 PVC/HPG3-C4는 높은 말단 농도로 인해 PVC/DEHP에 필적하는 우수한 가소화 효율 및 낮은 알파 완화 겉보기 활성화 에너지를 나타냈다. PVC/HPG-C4의 투명성과 열 안정성은 PVC/DEHP보다 우수하며 HPG-C4는 급성 독성이 없고 생물학적으로 안전하였다. 또한 PVC/HPG-C4는 유출 테스트에서 PVC/DEHP보다 80% 이상 저감된 매우 낮은 유출성을 보였다.
세 번째로, HPG로 기능화 된 그래핀 산화물(HGO)을 보강 나노필러로 사용하여 연질 PVC 나노복합체를 제조하였다. HGO는 글리시돌의 표면 개시 개환 중합에 이어 부티르산 무수물에 의한 에스테르화에 의해 합성되었고, PVC와 상호작용할 수 있는 풍부한 작용기를 보유하며 개별적으로 박리된 나노시트로 존재하였다. 말단 부틸화 그래핀 산화물(BGO)과 비교 연구를 통해 HPG 기능화가 PVC 내에서 HGO를 균일하게 분산시키고 HGO와 PVC 사이의 강력한 계면 상호 작용을 형성하는 데 핵심 요소임을 밝혀냈다. 결과적으로, 연질 PVC/HGO 나노복합체 필름은 HGO가 첨가되지 않은 연질 PVC와 비교하여 기존의 신장성을 유지하면서 인장 강도 및 인성은 현저히 향상되었다. 또한 HGO의 2차원 평면 구조와 PVC/HGO 나노복합체 내에서의 균질한 분산은 기체 분자가 매우 구불구불한 경로를 따라가게 하여 산소 투과율을 현저하게 감소시켰으며, 이는 HGO가 첨가되지 않은 연질 PVC보다 60% 이상 낮았다.
마지막으로, HPG의 클릭 그래프팅을 통해 고도로 자기 가소화 된 PVC를 제시하였다. 무정형이면서 부피가 큰 HPG의 덴드리틱 구조는 그래프트 PVC의 자유 부피를 효율적으로 증가시켜 기존의 방식으로 가소화 된 PVC와 상응하는 낮은 유리 전이 온도를 보였다. 점탄성 분석 결과 HPG는 실온에서 그래프트 PVC의 유연성을 상당히 향상시키고 사슬의 분절 운동을 촉진한다는 것을 밝혀냈다. HPG가 그래프트 된 PVC 필름은 PVC와 HPG의 혼합물과 달리 탁월한 신장성을 나타냈는데, 이는 HPG를 PVC에 공유 결합시킴으로써 인장 하중 시 균질하고 잘 정렬된 구조를 유지할 수 있기 때문이다. 더 나아가, 그래프트 PVC는 PVC와 HPG 사이의 공유결합으로 인해 완벽한 유출 안정성을 보였다. 본 연구는 고차가지구조의 곁사슬을 도입하여 높은 연질성과 신장성을 지닌 고분자 소재를 설계하는 데 있어 가치 있는 통찰력을 제시하였다.
Hyperbranched polyglycerol (HPG) has been attracting great interest owing to its advantages of low chain entanglement, large population of functional groups, excellent biocompatibility, facile one-pot synthesis, and potential to be synthesized from a monomer derived from sustainable resources. Especially, HPG is expected to have high molecular mobility due to its flexible chain segments as well as dendritic architecture. In this study, HPG-based materials are synthesized and their plasticizing effects in poly(vinyl chloride) (PVC) are evaluated. To achieve this, green plasticizers, nanofiller and self-plasticized PVC containing HPG moieties are developed, and their structure-property relationship is investigated in detail.
Firstly, highly branched polycaprolactone (hbPCL) is developed for use as effective green plasticizer for PVC. The hbPCL with tunable molecular architecture is facilely synthesized using glycidol, a monomer for polymerization of HPG, as a branching monomer. A series of hbPCLs is prepared via one-pot, solvent-free copolymerization of ε-caprolactone and glycidol, wherein the molecular architecture is readily controlled by varying the molar ratio of glycidol to ε-caprolactone. Further, studying the kinetics of copolymerization reveals the preferential reaction of glycidol over ε-caprolactone, resulting in a HPG-core star-like copolymer after the ring-opening of the two monomers. The crystallization ability of hbPCL is found to gradually weaken with the introduction of the branching structure, and its molecular mobility is improved substantially by esterification with butyric anhydride, following which a maximum mobility is realized at an intermediate level of branching. The butyl-esterified hbPCL (hbPCL-C4) is miscible with PVC, and their mixtures have excellent flexibility comparable to that of PVC/bis(2-ethylhexyl) phthalate (DEHP). In particular, the stretchability of PVC/hbPCL-C4 is superior to that of PVC/DEHP, owing to its better structural homogeneity. Furthermore, PVC/hbPCL-C4 shows outstanding migration stability with the weight loss after extraction being >85% lower than that of PVC/DEHP.
Secondly, a green plasticizer composed of alkyl terminal hyperbranched polyglycerol (alkyl-HPG) is developed for the production of non-toxic, phthalate-free flexible PVC. The synthesized alkyl-HPGs are transparent liquids at room temperature and exhibit considerably lower volatility than DEHP. The miscibility analyses reveal that the alkyl termination and the hyperbranched architecture of alkyl-HPG are the key factors for improving its miscibility with PVC, and butyl-terminated HPGs (HPG-C4s) are fairly miscible with PVC irrespective of their degree of polymerization (DP). The obtained PVC/HPG-C4 films exhibit similar flexibility and stretchability with the corresponding properties of PVC/DEHP films. In particular, PVC/HPG3-C4, the blend with the smallest DP, has excellent plasticization efficiency and low apparent activation energy (Ea) for α relaxation comparable to those of PVC/DEHP owing to its high concentration of chain ends. The transparency and thermal stability of PVC/HPG-C4 are rather better than those of PVC/DEHP, and HPG-C4s are biologically safe without acute toxicity. Moreover, PVC/HPG-C4 shows an extremely small degree of migration in leaching tests, more than 80% lower than that of PVC/DEHP.
Thirdly, flexible PVC nanocomposites are prepared by using HPG-functionalized graphene oxide (HGO) as a reinforcing nanofiller. HGO, synthesized by surface-initiated ring-opening polymerization of glycidol followed by esterification with butyric anhydride, exists as individual exfoliated nanosheets possessing abundant functional groups capable of interacting with PVC. A comparative study of butyl-terminated graphene oxide (BGO) reveals that functionalization with HPG is of key importance for achieving a uniform dispersion of HGO in the PVC matrix and results in strong interfacial interactions between HGO and PVC. As a result, flexible PVC/HGO nanocomposite films exhibit significantly enhanced tensile strength and toughness compared to those of neat plasticized PVC while maintaining its inherent stretchability. Furthermore, the 2D planar structure and homogeneous distribution of HGO in PVC/HGO nanocomposites make gas molecules follow a highly tortuous path, resulting in remarkably reduced oxygen permeability, which is more than 60% lower than that of neat plasticized PVC.
Lastly, a highly self-plasticized PVC is presented for the first time via click grafting of HPG. The amorphous and bulky dendritic structure of HPG efficiently increases the free volume of the grafted PVC, which leads to a remarkably lower glass transition temperature comparable to that of the conventional plasticized PVC. Viscoelastic analysis reveals that HPG considerably improves the softness of the grafted PVC at room temperature and promotes the segmental motion in the system. The HPG-grafted PVC films exhibit an exceptional stretchability unlike the mixture of PVC and HPG because the covalent attachment of HPG to PVC allows it to maintain its homogeneous and well-organized architecture under tensile stretching. Furthermore, the HPG-grafted PVC exhibits perfect migration stability owing to the covalent bonding between PVC and HPG. This work provides valuable insights into the design of highly flexible and stretchable polymeric materials by means of introducing hyperbranched side chains.
Language
eng
URI
https://hdl.handle.net/10371/161944

http://dcollection.snu.ac.kr/common/orgView/000000157004
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Materials Science and Engineering (재료공학부)Theses (Ph.D. / Sc.D._재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse