Publications

Detailed Information

Nature of polymerization, structural disorder, and properties of iron-bearing silicate and aluminosilicate glasses and melts: Insights from high-resolution 29Si, 27Al and 17O solid-state NMR : 함철 규산염 및 알루미노규산염 비정질의 중합도와 무질서도 규명을 통한 용융체 물성의 이해: 고분해능 고상 핵자기공명 분광분석 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

김효임

Advisor
이성근
Issue Date
2019-08
Publisher
서울대학교 대학원
Keywords
Iron-bearing silicate/aluminosilicate glasses and meltsstructure and disordersolid-state nuclear magnetic resonanceparamagnetic effect
Description
학위논문(박사)--서울대학교 대학원 :자연과학대학 지구환경과학부,2019. 8. 이성근.
Abstract
철은 지구 및 지구형 행성에서 생성되는 규산염 용융체와 지표의 비정질을 구성하고 있는 가장 풍부한 전이금속 원소로서, 물질 내 철의 함량과 산화상태의 변화는 점성도 등의 물질의 성질에 변동을 야기하며, 나아가 화산 분출 양상 등의 다양한 지질학적 과정에 영향을 준다. 이러한 변화를 근본적으로 이해하기 위해서는 철이 포함되어 있는 용융체와 비정질의 원자 단위에서의 구조적 연결도, 화학적 배열, 그리고 위상학적 무질서도를 규명하는 연구가 필수적이다. 이러한 중요성에도 불구하고, 함철 비정질 및 용융체의 원자구조와 무질서도를 규명하는 것은 적합한 실험 방법론의 부재로 인하여 지질학 분야뿐만 아니라 자연과학 전반에 걸친 난제로 남아있었다. 특히, 고상 핵자기공명 분광분석(NMR)은 비정질의 구조적 정보를 직접적으로 체계적으로 제공하는 높은 이론적/기술적 성숙도를 갖는 실험방법론임에도 불구하고, 함철 물질의 NMR 연구는 상자성 효과로 인한 신호의 감소 및 분해능의 저하로 인해 극히 제한적으로만 수행되어 왔다. 이 학위논문에서는 상기 언급한 실험적 난점들을 극복하고 고상 NMR 방법론을 이용하여 획득한 다양한 조성의 함철 규산염 및 알루미노규산염 비정질의 원자구조와 무질서도 정보를 제시하였다. 또한, 획득된 구조적 정보를 기반으로 철 함량 및 산화상태의 변화에 따른 함철 용융체의 물성 변동의 미시적 메커니즘을 규명하였다.
먼저, 최고 23 wt%까지의 다양한 함량의 산화철(Fe3+/ΣFe = 0.89)이 포함된 Na2O-Fe2O3-SiO2 비정질의 규소 및 산소 주변의 원자 환경에 관한 정량적 정보를 획득하였다. Fe3+의 함량이 증가할수록 구조의 중합도가 증가하고 비연결산소의 비율이 감소하는 양상을 관찰하였고, 이를 통해 Fe3+가 네트워크 형성이온으로서의 역할을 한다는 것을 확인하였다. 또한 Fe3+의 함량에 따라 연결산소의 무질서도 증가가 우세함을 규명하였고, 이는 Fe3+과 연결산소가 공간적 근접성을 가지고 있음을 제시한다. 이와 더불어, 지구 맨틀 물질의 조성인 (Mg,Fe)SiO3 비정질(Fe3+/ΣFe = 0.2)의 철 함량 증가에 따른 구조 및 무질서도의 변화를 관찰하였다. 이 연구 결과를 통하여 Fe2+가 증가함에 따라 중합도가 낮은 규소 환경과 비연결산소 주변의 화학적 및 위상학적 무질서도가 증가됨을 확인하였다. 마지막으로, 이 연구에서는 다양한 함량의 철이 포함된 자연계 유문암질의 모델시스템인 함철 앨바이트 및 아노르사이트 비정질의 알루미늄, 규소, 그리고 산소 주변의 원자 환경을 규명하였다. 해당 연구에서는 현재까지 보고되지 않았던 함철 비정질의 알루미늄 환경을 관찰한 결과를 제시함으로써, 규소와 Fe3+간의 혼합, 알루미늄과 Fe2+간의 우세한 상호작용, 철 함량 증가에 따른 고배위수의 알루미늄과 철의 형성 등의 철 진입에 따른 구조적 무질서도의 변화를 확인하였다.
본 학위 논문의 연구 결과는 다양한 조성의 규산염과 알루미노규산염 비정질 내 철 함량의 증가가 화학적 및 위상학적 무질서도를 증가시키는 등의 구조적 변동을 야기한다는 사실을 보여주었다. 이와 같은 무질서도의 증가는 철 함량 증가에 따른 용융체의 점성도의 감소를 근본적으로 설명할 수 있는 미시적 원인이 된다. 본 연구는 고상 NMR을 이용하여 함철 비정질의 중합도 및 무질서도에 관한 유의미한 정보를 획득한 최초의 실험적 연구이다. 이에, 이 학위 논문의 결과들은 자연계에 존재하는 각종 함철 유리질과 용융체의 구조와 물성의 관계를 이해하는 것에 있어 중요한 역할을 할 수 있을 것으로 기대된다.
Iron is one of the most abundant transition metals in the natural magmatic melts of the Earth and other terrestrial planets. In the silicate melts and glasses, iron can be found in variable content and multiple valence states. The physical and chemical properties of silicate melts and glasses (e.g., viscosity, density, and element partitioning) are strongly dependent on iron content and the redox state. The key to fundamental understanding of the properties of iron-bearing silicate glasses and their corresponding melts is the determination of detailed structure and disorder among constituent cations and anions. Despite the importance, the detailed structure and disorder of iron-bearing glasses is largely unknown, because the solid-state NMR, one of the most effective experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features.
The main objective of the dissertation is to reveal the effect of iron content and redox state on the atomic structure and extent of structural disorder of iron-bearing silicate and aluminosilicate glasses and to provide insights into the systematic relationships between atomic structure and macroscopic properties. To systematically investigate the effect of iron content and redox state on structure and disorder of iron-bearing glasses, solid-state NMR techniques have been mainly utilized, despite the inherent difficulties.
First, I have demonstrated that high-resolution solid-state NMR techniques can be effectively applied to study the effect of iron content on the atomic configurations around Si and O sites in Na2O-Fe2O3-SiO2 glasses [up to 22.9 wt% Fe2O3 (Fe3+/ΣFe = 0.89)]. The NMR results show that changes in NMR peaks and relevant parameters reflect iron-induced structural changes, such as degree of polymerization, topological disorder, and iron distribution around silicon and oxygen sites. This study also yields the first glimpse of the iron distribution in the silicate networks. Second, the NMR results provided the structural details of the geologically vital Fe2+-dominant (Mg,Fe)SiO3 glasses (Fe3+/ΣFe = 0.2) with varying iron content, despite severe overlap among spectral features. In conjunction with the NMR results of Fe3+-dominant sodium silicate glasses, the effect of valence state of iron on the short- (i.e., Q species, NBO/BO) and medium-range (i.e., spatial proximity between iron and nuclear spins) of atomic structure was explored. These results show that an increase in Fe3+ in silicate glasses leads to an increase in the extent of polymerization. The type of oxygen site that preferentially interacts with iron depends on the valence state of the iron: specifically, the 17O NMR results indicate the presence of a moderate degree of preferential interaction between Fe2+ and non-bridging oxygen (NBO), as well as that between Fe3+ and bridging oxygen (BO) in the iron-bearing silicate glasses. The unique NMR results of (Mg,Fe)SiO3 glasses provide atomistic insights into the viscous flow of mafic silicate melts.
Beyond the binary silicate glasses, the detailed structure and disorder of iron-bearing Na- and Ca-aluminosilicate glasses can be obtained using high-resolution solid-state NMR and Mössbauer spectroscopy. The iron-bearing aluminosilicate glasses used in this study are simplified model rhyolitic charge-balanced glasses, which corresponds to the tectosilicate composition. High-resolution solid-state NMR techniques can determine the effect of iron content on the atomic configurations around Si, Al, and O sites in Na(Al1-XFeX)Si3O8 (Fe3+/ΣFe = ~0.8), NaAlSi3O8 + Fe2O3 (Fe3+/ΣFe = ~0.5), and CaAl2Si2O8 + Fe2O3 (Fe3+/ΣFe = ~0.3) glasses. The noble NMR results for iron-bearing aluminosilicate glasses revealed the nature of diverse aspect of iron-induced structural disorder, mainly characterized by the intermixing between Si and Fe3+, preferential interaction between Al and Fe2+, and formation of highly coordinated [5]Fe3+. The observed increase in the extent of structural disorder in charge-balanced Na- and Ca-aluminosilicate glasses with increasing Fe2+ and Fe3+ can account for the iron-induced decrease in viscosity of the corresponding iron-bearing aluminosilicate melts. Though qualitative, these structural findings with increasing iron content can provide unique constraints on the atomistic origins of the properties of natural silicate melts.
Language
eng
URI
https://hdl.handle.net/10371/162429

http://dcollection.snu.ac.kr/common/orgView/000000156437
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share