Publications

Detailed Information

Multiscale Analysis of Spatio-Temporal Data : 시공간 자료의 다중척도 분석

DC Field Value Language
dc.contributor.advisor오희석-
dc.contributor.author박선철-
dc.date.accessioned2019-10-21T03:41:09Z-
dc.date.available2020-02-04T00:13:05Z-
dc.date.issued2019-08-
dc.identifier.other000000157044-
dc.identifier.urihttps://hdl.handle.net/10371/162437-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000157044ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :자연과학대학 통계학과,2019. 8. 오희석.-
dc.description.abstractThis thesis presents a multiscale analysis of spatio-temporal data. The content of this thesis consists of three chapters.
First, we suggest an enhancement of the lifting scheme, one of the popular multiscale method, by using clustering-based network design. The proposed method is originally developed for enhancement of graph signal data, and the simulation and real data analysis results show that the proposed method has the advantage to reconstruct the noisy data compared to conventional lifting scheme method. Moreover, the advantage of the proposed method is not limited to the graph signal denoising. It is also shown that the proposed method the proposed neighborhood selection is able to combine with lifting one coefficient at a time (LOCAAT) algorithm, which is a lifting scheme algorithm frequently used in signal denoising.
Second, we suggest a new lifting scheme concept which could be applied for streamflow data. It is impossible to apply the original lifting scheme to streamflow data directly because of its complex structure. In this thesis, to adapt the concept of lifting scheme to streamflow data, we suggest a new lifting scheme algorithm for streamflow data with flow-adaptive neighborhood selection, flow proportional weight generation, and flow-length adaptive removal point selection. By using the proposed method, we can successfully construct a multiscale analysis of streamflow data. Simulation study supports the performance of the lifting scheme for streamflow data is competitive for signal denoising. Besides, the proposed methods can visualize the multiscale structure of the network by adding or subtracting observations.
Third, multiscale analysis for particulate matter data in Seoul is provided as a case study. We suggest a new method, which is a novel combi- nation of multiscale analysis and extreme value theory. The study starts from the idea that every climate event has its spatial or temporal event lengths. By changing the event area and duration time, we can estimate multiple extreme value parameters using generalized extreme value (GEV) distribution. Besides, we suggest a new property, called piecewise scaling property to combine multiple GEV estimators into a single equation. By using the proposed method, we can construct a return level map with ar- bitrary duration time and event area.
-
dc.description.abstract이 논문은 다중 척도 분석을 시공간 자료에 응용한 방법들을 제시한다. 첫째, 그래프 신호 자료에서의 다중 척도 분석 방법 중 하나인 리프팅 스킴을 군집 에 기반한 이웃 재설정을 통해 기대 예측 오차를 줄일 수 있음을 보이고 이를 통해 리프팅 스킴의 성능을 향상하였다. 둘째, 공간적으로 복잡하고 방향성이 있는 구조에서 생성된 유량 네트워크 자료에 알맞는 리프팅 스킴을 구성하기 위해 네트워크의 특성을 반영한 이웃 선택, 예측 필터 구성 및 영역 설정으로 유량 네트워크 자료에 대한 리프팅 스킴을 구성하고 시공간 자료에의 확장 가능성을 살펴보았다. 마지막으로 서울특별시 고농도 미세먼지 자료를 다양 한 시간, 공간 및 시공간 집적을 통해 변환한 후 얻어진 일반화 극단값 모형의 모수들의 관계를 수문학에서 사용하는 강도-지속시간-발생빈도 곡선에 매듭 을 추가한 변형된 형태의 강도-지속시간-발생빈도 곡선을 따라 모델링하였고 사례 연구를 통해 원 자료의 복귀 수준 지도를 좀 더 정확히 묘사할 수 있음을 보였다.-
dc.description.tableofcontentsAbstract i
1 Introduction 1
2 Review: Multiscale analysis 4
2.1 Wavelets 4
2.1.1 Haar transforms 5
2.2 Multiresolution analysis 6
2.3 Lifting scheme 7
2.3.1 Lifting one coefficient at a time (LOCAAT) 11
2.3.2 Other lifting scheme methods 12
3 Enhancement of lifting scheme on graph signal data via clustering-based network design 14
3.1 Graph notations 15
3.2 Previous works 16
3.3 The use of clustering under the piecewise generalized moving average model 17
3.3.1 Piecewise generalized moving average model 18
3.3.2 Optimal UPA assignment under the piecewise homogeneous model 21
3.3.3 Extension to the spatio-temporal data 23
3.4 Simulation study 24
3.4.1 Stochastic block model 24
3.4.2 Image data analysis 26
3.4.3 Blocks signal denoising 29
3.5 Real data analysis 31
3.6 Summary and discussion 32
4 Streamflow lifting scheme 34
4.1 Dataset 36
4.2 Streamflow lifting scheme 37
4.2.1 Neighborhood selection 38
4.2.2 Prediction filter construction 39
4.2.3 Removal point selection 41
4.3 Simulation study 42
4.4 Real data analysis 47
4.5 Summary and further works 50
5 Multiscale analysis for PM10 extremes in Seoul 51
5.1 Data description 51
5.2 Temporal analysis of Seoul extreme PM10 data 54
5.2.1 Temporal aggregation and conventional scale property 54
5.2.2 Temporal multiscale modeling and modified scaling property 56
5.2.3 Result 1: GEV parameter estimation via piecewise linear approximation 57
5.2.4 Result 2: Return level map by the proposed modified scaling approach 62
5.3 Spatio-temporal multiscale analysis of Seoul extreme PM10 data 65
5.3.1 Spatio-temporal aggregation of Seoul extreme PM10 data 65
5.3.2 Result: Areal aggregation of Seoul extreme PM10 data 70
5.4 Summary and discussion 73
6 Concluding remarks 76
A Generalized extreme value distribution 77
B Scaling property theory 79
Abstract (in Korean) 85
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject다중 척도 방법론-
dc.subject리프팅 스킴-
dc.subject유량 자료-
dc.subject일반화 극단값 분포-
dc.subject.ddc519.5-
dc.titleMultiscale Analysis of Spatio-Temporal Data-
dc.title.alternative시공간 자료의 다중척도 분석-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSeoncheol Park-
dc.contributor.department자연과학대학 통계학과-
dc.description.degreeDoctor-
dc.date.awarded2019-08-
dc.identifier.uciI804:11032-000000157044-
dc.identifier.holdings000000000040▲000000000041▲000000157044▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share