Publications

Detailed Information

The outcome‐representation learning model: a novel reinforcement learning model of the iowa gambling task

DC Field Value Language
dc.contributor.authorHaines, Nathaniel-
dc.contributor.authorVassileva, Jasmin-
dc.contributor.authorAhn, Woo-Young-
dc.creator안우영-
dc.date.accessioned2020-01-23T07:21:26Z-
dc.date.available2020-04-05T07:21:26Z-
dc.date.created2019-07-23-
dc.date.created2019-07-23-
dc.date.created2019-07-23-
dc.date.created2019-07-23-
dc.date.created2019-07-23-
dc.date.issued2018-11-
dc.identifier.citationCognitive Science, Vol.42 No.8, pp.2534-2561-
dc.identifier.issn0364-0213-
dc.identifier.urihttps://hdl.handle.net/10371/163530-
dc.description.abstractThe Iowa Gambling Task (IGT) is widely used to study decision-making within healthy and psychiatric populations. However, the complexity of the IGT makes it difficult to attribute variation in performance to specific cognitive processes. Several cognitive models have been proposed for the IGT in an effort to address this problem, but currently no single model shows optimal performance for both short- and long-term prediction accuracy and parameter recovery. Here, we propose the Outcome-Representation Learning (ORL) model, a novel model that provides the best compromise between competing models. We test the performance of the ORL model on 393 subjects' data collected across multiple research sites, and we show that the ORL reveals distinct patterns of decision-making in substance-using populations. Our work highlights the importance of using multiple model comparison metrics to make valid inference with cognitive models and sheds light on learning mechanisms that play a role in underweighting of rare events.-
dc.language영어-
dc.language.isoENGen
dc.publisherLawrence Erlbaum Associates Inc.-
dc.titleThe outcome‐representation learning model: a novel reinforcement learning model of the iowa gambling task-
dc.typeArticle-
dc.identifier.doi10.1111/cogs.12688-
dc.citation.journaltitleCognitive Science-
dc.identifier.wosid000453527500004-
dc.identifier.scopusid2-s2.0-85054517054-
dc.description.srndOAIID:RECH_ACHV_DSTSH_NO:T201832772-
dc.description.srndRECH_ACHV_FG:RR00200001-
dc.description.srndADJUST_YN:-
dc.description.srndEMP_ID:A080561-
dc.description.srndCITE_RATE:2.617-
dc.description.srndFILENAME:Haines_et_al-2018-Cognitive_Science (1).pdf-
dc.description.srndDEPT_NM:심리학과-
dc.description.srndEMAIL:wahn55@snu.ac.kr-
dc.description.srndSCOPUS_YN:Y-
dc.description.srndFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/f842958f-ad20-4c4a-9737-58c7fc2edc61/link-
dc.citation.endpage2561-
dc.citation.number8-
dc.citation.startpage2534-
dc.citation.volume42-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorAhn, Woo-Young-
dc.identifier.srndT201832772-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusVENTROMEDIAL PREFRONTAL CORTEX-
dc.subject.keywordPlusDECISION-MAKING-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSCHIZOPHRENIA-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusEXPERIENCE-
dc.subject.keywordPlusPARADIGM-
dc.subject.keywordPlusDEFICITS-
dc.subject.keywordPlusSIGNALS-
dc.subject.keywordPlusADULTS-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorReinforcement learning-
dc.subject.keywordAuthorSubstance use-
dc.subject.keywordAuthorIowa Gambling Task-
dc.subject.keywordAuthorBayesian data analysis-
dc.subject.keywordAuthorAmphetamine-
dc.subject.keywordAuthorHeroin-
dc.subject.keywordAuthorCannabis-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Social Sciences
  • Department of Psychology
Research Area Addiction, computational neuroscience, decision neuroscience, 계산 신경과학, 의사결정 신경과학, 중독

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share