Publications

Detailed Information

Innovation of flux chamber network design for surface methane emission from landfills using spatial interpolation models

Cited 12 time in Web of Science Cited 15 time in Scopus
Authors

Jeong, Sangjae; Park, Jeryang; Kim, Yeong Min; Park, Man Ho; Kim, Jae Young

Issue Date
2019-10-20
Publisher
Elsevier BV
Citation
Science of the Total Environment, Vol.688, pp.18-25
Abstract
Solid waste landfills are one of the primary anthropogenic sources of methane emissions which are often estimated by flux chamber measurements on landfill surfaces. Due to the small footprint of the flux chamber on the surface coverage, however, it is important to design a proper spatial deployment of the chambers with an optimal number of measurement points such that the measured fluxes arc correctly scaled up to the whole landfill area. In order to improve the design of flux chamber network, several deterministic interpolation models were applied and results of reproducibility tests with 22 flux measurement data sets from ten municipal solid waste landfills in the Republic of Korea were compared one another. The bilinear model and natural neighbor model among the deterministic models showed stable results in all cases. The surface methane emissions estimated from arithmetic or geometric mean resulted in significant under- or overestimation compared to spatial interpolation methods in all data sets. As a result of this study, minimal number of flux measurement points could be determined for target error levels. Innovative flux chamber network design with proper measurement points will improve the accuracy of methane emission estimate from solid waste landfills. (C) 2019 The Authors. Published by Elsevier B.V.
ISSN
0048-9697
Language
ENG
URI
https://hdl.handle.net/10371/163620
DOI
https://doi.org/10.1016/j.scitotenv.2019.06.142
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share