Publications

Detailed Information

Contribution of p38 MAPK Pathway to Norcantharidin-Induced Programmed Cell Death in Human Oral Squamous Cell Carcinoma

Cited 13 time in Web of Science Cited 15 time in Scopus
Authors

Ahn, Chi-Hyun; Hong, Kyoung-Ok; Jin, Bohwan; Lee, WonWoo; Jung, Yun Chan; Lee, Hakmo; Shin, Ji-Ae; Cho, Sung-Dae; Hong, Seong Doo

Issue Date
2019-07
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
International Journal of Molecular Sciences, Vol.20 No.14, p. 3487
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin isolated from blister beetles, has been used as a promising anticancer agent; however, the underlying function of NCTD against human oral squamous cell carcinoma (OSCC) has not been fully understood. Here, this study was aimed to investigate the apoptotic effect and molecular targets of NCTD in human OSCC in vitro and in vivo. The anticancer effects of NCTD and its related molecular mechanisms were evaluated by trypan blue exclusion assay, live/dead assay, western blotting, 4-6-Diamidino-2-Phenylindole (DAPI) staining, flow cytometric analysis, Terminal Deoxynucleotidyl Transferase dUTP Nick end Labeling (TUNEL) assay, and immunohistochemistry. NCTD significantly inhibited cell growth and increased the number of dead cells in HSC-3 and HN22 cell lines. It induced the following apoptotic phenomena: (1) the cleavages of poly (ADP-ribose) polymerase and casepase-3; (2) increase in apoptotic morphological changes (nuclear condensation and fragmentation); (3) increase in annexin V-positive cells or sub-G(1) population of cells. NCTD significantly activated the p38 mitogen-activated protein kinase (MAPK) pathway but inactivated the signal transducer and activator of transcription (STAT)3 pathway. A p38 MAPK inhibitor (SB203580) partially attenuated NCTD-induced programmed cell death (apoptosis) in both cell lines, whereas ectopic overexpression of STAT3 did not affect it. NCTD strongly suppressed tumor growth in the tumor xenograft bearing HSC-3 cells, and the number of TUNEL-positive cells increased in NCTD-treated tumor tissues. In addition, NCTD did not cause any histopathological changes in the liver nor the kidney. NCTD induced programmed cell death via the activation of p38 MAPK in OSCC. Therefore, these results suggest that NCTD could be a potential anticancer drug candidate for the treatment of OSCC.
ISSN
1661-6596
Language
ENG
URI
https://hdl.handle.net/10371/163845
DOI
https://doi.org/10.3390/ijms20143487
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • School of Dentistry
  • Department of Dentistry
Research Area Discovery of molecular targets related to oral cancer metastasis and identification of signal transduction system, Identifying the role of immunological tolerance in oral cancer, Presenting a new concept oral cancer prevention and treatment strategy through identification of major molecular targets and mechanisms related to oral cancer development, 구강암 발병관련 주요 분자표적 및 기전 규명을 통한 신개념 구강암 예방 및 치료전략 제시, 구강암 전이관련 분자표적 발굴 및 신호전달체계 규명, 구강암에서 면연관용의 역할 규명

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share