Detailed Information

Exercise, the Gut Microbiome, and Frailty

Cited 17 time in Web of Science Cited 18 time in Scopus

Shin, Hyung Eun; Kwak, Seong Eun; Lee, Ji-Hyun; Zhang, Didi; Bae, Jun Hyun; Song, Wook

Issue Date
Korea Geriatrics Society
Annals of Geriatric Medicine and Research, Vol.23 No.3, pp.105-114
The gut microbiome is deeply associated with both skeletal muscle and brain function. In particular, gut microbiome dysbiosis may accelerate age-related diseases by affecting these systems. Although there is increasing evidence of the correlations between the gut microbiome and skeletal muscle and brain, it remains unclear whether changes in the gut microbiome due to exercise training can lead to healthy aging. This review covers the current status of gut microbiome-related research and future directions related to aging (e.g., physical frailty and cognitive dysfunction) as well as the effect of exercise training on both. We reviewed relevant literature including original articles and reviews identified from searches of the PubMed, Google Scholar, SCOPUS, EB-SCOHost, ScienceDirect, Cochrane Library, and EMBASE databases using the following terms: 'gut microbiome', 'exercise', 'physical frailty', and 'cognitive dysfunction'. We identified a strong positive correlation between cognitive dysfunction or physical frailty and the gut microbiome. Furthermore, exercise had a significant effect on the composition of the gut microbiome. These results suggest that exercise training can prevent physical frailty or cognitive dysfunction by altering the gut microbiome. However, the exact mechanism by which these effects occur is not yet clear. Further studies are needed to determine whether exercise training can prevent age-related diseases by balancing the gut microbiome.
Files in This Item:
There are no files associated with this item.
Appears in Collections:


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.