Publications

Detailed Information

Horizontal-to-Vertical Transition of 2D Layer Orientation in Low-Temperature Chemical Vapor Deposition-Grown PtSe2 and Its Influences on Electrical Properties and Device Applications

Cited 73 time in Web of Science Cited 75 time in Scopus
Authors

Han, Sang Sub; Kim, Jong Hun; Noh, Chanwoo; Kim, Jung Han; Ji, Eunji; Kwon, Junyoung; Yu, Seung Min; Ko, Tae-Jun; Okogbue, Emmanuel; Oh, Kyu Hwan; Chung, Hee-Suk; Jung, YounJoon; Lee, Gwan-Hyoung; Jung, Yeonwoong

Issue Date
2019-04
Publisher
American Chemical Society
Citation
ACS Applied Materials and Interfaces, Vol.11 No.14, pp.13598-13607
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (2D TMDs) in the form of MX2 (M: transition metal, X: chalcogen) exhibit intrinsically anisotropic layered crystallinity wherein their material properties are determined by constituting M and X elements. 2D platinum diselenide (2D PtSe2) is a relatively unexplored class of 2D TMDs with noble-metal Pt as M, offering distinct advantages over conventional 2D TMDs such as higher carrier mobility and lower growth temperatures. Despite the projected promise, much of its fundamental structural and electrical properties and their interrelation have not been clarified, and so its full technological potential remains mostly unexplored. In this work, we investigate the structural evolution of large-area chemical vapor deposition (CVD)-grown 2D PtSe2 layers of tailored morphology and clarify its influence on resulting electrical properties. Specifically, we unveil the coupled transition of structural-electrical properties in 2D PtSe2 layers grown at a low temperature (i.e., 400 degrees C). The layer orientation of 2D PtSe2 grown by the CVD selenization of seed Pt films exhibits horizontal-to-vertical transition with increasing Pt thickness. While vertically aligned 2D PtSe2 layers present metallic transports, field-effect-transistor gate responses were observed with thin horizontally aligned 2D PtSe2 layers prepared with Pt of small thickness. Density functional theory calculation identifies the electronic structures of 2D PtSe2 layers undergoing the transition of horizontal-to-vertical layer orientation, further confirming the presence of this uniquely coupled structural-electrical transition. The advantage of low-temperature growth was further demonstrated by directly growing 2D PtSe2 layers of controlled orientation on polyimide polymeric substrates and fabricating their Kirigami structures, further strengthening the application potential of this material. Discussions on the growth mechanism behind the horizontal-to-vertical 2D layer transition are also presented.
ISSN
1944-8244
Language
ENG
URI
https://hdl.handle.net/10371/164001
DOI
https://doi.org/10.1021/acsami.9b01078
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share