Browse

Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes

Cited 7 time in Web of Science Cited 8 time in Scopus
Authors
Chang, Donghee; Oh, Kyungbae; Kim, Sung Joo; Kang, Kisuk
Issue Date
2018-12
Citation
Chemistry of Materials, Vol.30 No.24, pp.8764-8770
Abstract
Here, we examine the intrinsic ion conduction properties of Li7P3S11-type materials, one of the important solid electrolytes for lithium batteries, through a comprehensive computational investigation on the interplay among the crystal structure, defects, and diffusion mechanism. Our extensive ab initio molecular dynamics calculations suggest that the Li7P3S11, crystal frame is inherently flexible with readily-fluctuating P2S7 polyhedra and possesses high density of interstitial sites, which flatten the overall energy landscape for ion migration and provide higher degrees of freedom for ion movement. Statistical analysis also presents that ionic conduction in Li7P3S11 is negligibly influenced by the presence of defects and the change of charge carrier concentrations. It implies that the intrinsic high ionic conductivity of Li7P3S11 can be easily preserved in various chemical conditions during the synthesis or electrochemical operations under Li-rich or vacancy-rich conditions. This study broadens our understanding on the Li7P3S11-type materials with respect to the crystal structure, defects, and superionic conductions, which would aid in the further development of this class of materials.
ISSN
0897-4756
URI
https://hdl.handle.net/10371/164979
DOI
https://doi.org/10.1021/acs.chemmater.8b03000
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse