Publications

Detailed Information

Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes

DC Field Value Language
dc.contributor.authorKu, Kyojin-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorKim, Hyungsub-
dc.contributor.authorPark, Hyeokjun-
dc.contributor.authorSeong, Won Mo-
dc.contributor.authorJung, Sung-Kyun-
dc.contributor.authorYoon, Gabin-
dc.contributor.authorPark, Kyu-Young-
dc.contributor.authorKim, Haegyeom-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2020-04-25T07:48:50Z-
dc.date.available2020-04-25T07:48:50Z-
dc.date.created2019-07-31-
dc.date.created2019-07-31-
dc.date.issued2018-07-
dc.identifier.citationAdvanced Energy Materials, Vol.8 No.21, p. 1800606-
dc.identifier.issn1614-6832-
dc.identifier.other80221-
dc.identifier.urihttps://hdl.handle.net/10371/164993-
dc.description.abstractCobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1-x-y]O-2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn-containing lithium-rich oxides to achieve long-lasting high energy density from this class of materials.-
dc.language영어-
dc.publisherWiley-VCH Verlag-
dc.titleSuppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes-
dc.typeArticle-
dc.contributor.AlternativeAuthor강기석-
dc.identifier.doi10.1002/aenm.201800606-
dc.citation.journaltitleAdvanced Energy Materials-
dc.identifier.wosid000445666000021-
dc.identifier.scopusid2-s2.0-85046254185-
dc.citation.number21-
dc.citation.startpage1800606-
dc.citation.volume8-
dc.identifier.sci000445666000021-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKang, Kisuk-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusRECHARGEABLE BATTERIES-
dc.subject.keywordPlusPHASE-TRANSITION-
dc.subject.keywordPlusCATIONIC REDOX-
dc.subject.keywordPlusOXIDE CATHODES-
dc.subject.keywordPlusSPINEL PHASE-
dc.subject.keywordPlusOXYGEN LOSS-
dc.subject.keywordAuthorlayered lithium-rich nickel manganese oxides-
dc.subject.keywordAuthorMn deactivation-
dc.subject.keywordAuthorphase transformation-
dc.subject.keywordAuthorredox buffers-
dc.subject.keywordAuthorvoltage decay-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share