Browse

Redesign of Li 2 MP 2 O 7 (M = Fe or Mn) by tuning the Li diffusion in rechargeable battery electrodes

Cited 15 time in Web of Science Cited 14 time in Scopus
Authors
Kim, Jongsoon; Lee, Byungju; Kim, Hyungsub; Kim, Hyunah; Kang, Kisuk
Issue Date
2016-10
Citation
Chemistry of Materials, Vol.28 No.19, pp.6894-6899
Abstract
Defects in crystals such as antisites generally lead-to the deterioration of the ionic conductivity of solid-state ionic conductors. Herein, using first principles calculations, we demonstrate that the Li diffusion in Li2MP2O7 (M = Fe or Mn), a promising battery material, is sensitively affected by the presence of Li/M antisites; however, unexpectedly, the antisites significantly promote Li diffusion. The calculations reveal that the presence of antisites reduces the barrier of Li hopping and opens new paths for Li diffusion in the Li2MP2O7 crystal. In our experimental verification, we succeeded in synthesizing crystalline Li2MnP2O7 with varying Li/Mn antisite contents and demonstrated that the inclusion of antisites results in improved power capability with faster Li diffusion for Li-ion battery electrodes. We believe that this unexpected finding of increasing the ionic conductivity by introducing antisite defects broadens our understanding of solid-state ionic conductors and provides a new strategy for improving Li diffusion in conventional electrode materials for Li rechargeable batteries.
ISSN
0897-4756
URI
https://hdl.handle.net/10371/165040
DOI
https://doi.org/10.1021/acs.chemmater.6b02198
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse