Publications

Detailed Information

Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases

Cited 137 time in Web of Science Cited 151 time in Scopus
Authors

Lee, Hyung Joo; Kweon, Jiyeon; Kim, Eunji; Kim, Seokjoong; Kim, Jin-Soo

Issue Date
2012-03
Publisher
Cold Spring Harbor Laboratory Press
Citation
Genome Research, Vol.22 No.3, pp.539-548
Abstract
Despite the recent discoveries of and interest in numerous structural variations (SVs)-which include duplications and inversions-in the human and other higher eukaryotic genomes, little is known about the etiology and biology of these SVs, partly due to the lack of molecular tools with which to create individual SVs in cultured cells and model organisms. Here, we present a novel method of inducing duplications and inversions in a targeted manner without pre-manipulation of the genome. We found that zinc finger nucleases (ZFNs) designed to target two different sites in a human chromosome could introduce two concurrent double-strand breaks, whose repair via non-homologous end-joining (NHEJ) gives rise to targeted duplications and inversions of the genomic segments of up to a mega base pair (bp) in length between the two sites. Furthermore, we demonstrated that a ZFN pair could induce the inversion of a 140-kbp chromosomal segment that contains a portion of the blood coagulation factor VIII gene to mimic the inversion genotype that is associated with some cases of severe hemophilia A. This same ZFN pair could be used, in theory, to revert the inverted region to restore genomic integrity in these hemophilia A patients. We propose that ZFNs can be employed as molecular tools to study mechanisms of chromosomal rearrangements and to create SVs in a predetermined manner so as to study their biological roles. In addition, our method raises the possibility of correcting genetic defects caused by chromosomal rearrangements and holds new promise in gene and cell therapy.
ISSN
1088-9051
URI
https://hdl.handle.net/10371/165622
DOI
https://doi.org/10.1101/gr.129635.111
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Biology and Biochemistry

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share