Browse

Genome editing reveals a role for OCT4 in human embryogenesis

Cited 159 time in Web of Science Cited 167 time in Scopus
Authors
Fogarty, Norah M. E.; McCarthy, Afshan; Snijders, Kirsten E.; Powell, Benjamin E.; Kubikova, Nada; Lakeley, Paul B.; Lea, Rebecca; Lder, Kay E.; Wamaitha, Sissy E.; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Ertero, Alessandro B.; Urner, James M. A. T.; Niakan, Kathy K.
Issue Date
2017-10
Citation
Nature, Vol.550 No.7674, pp.67-73
Abstract
Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.
ISSN
0028-0836
URI
https://hdl.handle.net/10371/165675
DOI
https://doi.org/10.1038/nature24033
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Seoul National University(서울대학교)Featured Researcher's Articles
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse