Browse

Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using campylobacter jejuni Cas9

Cited 0 time in Web of Science Cited 21 time in Scopus
Authors
Koo, Taeyoung; Lu-Nguyen, Ngoc B.; Malerba, Alberto; Kim, Eunji; Kim, Daesik; Cappellari, Ornella; Cho, Hee-Yeon; Dickson, George; Popplewell, Linda; Kim, Jin-Soo
Issue Date
2018-06
Citation
Molecular Therapy, Vol.26 No.6, pp.1529-1538
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle-wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be used as a gene-editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the EGFP gene in the tibialis anterior muscle of the Dmd knockout mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the disrupted Dmd reading frame from out of frame to in frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9, has great potential for the treatment of DMD and other neuromuscular diseases.
ISSN
1525-0016
URI
https://hdl.handle.net/10371/165700
DOI
https://doi.org/10.1016/j.ymthe.2018.03.018
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Seoul National University(서울대학교)Featured Researcher's Articles
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse