Publications

Detailed Information

A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs

Cited 45 time in Web of Science Cited 44 time in Scopus
Authors

Kim, Jeongmi; Cho, Yong-Joon; Do, Eunsoo; Choi, Jaehyuk; Hu, Guanggan; Cadieux, Brigitte; Chun, Jongsik; Lee, Younghoon; Kronstad, James W.; Jung, Won Hee

Issue Date
2012-11
Publisher
Academic Press
Citation
Fungal Genetics and Biology, Vol.49 No.11, pp.955-966
Abstract
The high-affinity reductive iron uptake system that includes a ferroxidase (Cfo1) and an iron permease (Cft1) is critical for the pathogenesis of Cryptococcus neoformans. In addition, a mutant lacking CFO1 or CFT1 not only has reduced iron uptake but also displays a markedly increased susceptibility to azole antifungal drugs. Altered antifungal susceptibility of the mutants was of particular interest because the iron uptake system has been proposed as an alternative target for antifungal treatment. In this study, we used transcriptome analysis to begin exploring the molecular mechanisms of altered antifungal susceptibility in a cfo1 mutant. The wild-type strain and the cfo1 mutant were cultured with or without the azole antifungal drug fluconazole and their transcriptomes were compared following sequencing with Illumina Genome Analyzer IIx (GAIIx) technology. As expected, treatment of both strains with fluconazole caused elevated expression of genes in the ergosterol biosynthetic pathway that includes the target enzyme Erg11. Additionally, genes differentially expressed in the cfo1 mutant were involved in iron uptake and homeostasis, mitochondrial functions and respiration. The cfo1 mutant also displayed phenotypes consistent with these changes including a reduced ratio of NAD(+)/NADH and down-regulation of Fe-S cluster synthesis. Moreover, combination treatment of the wild-type strain with fluconazole and the respiration inhibitor diphenyleneiodonium dramatically increased susceptibility to fluconazole. This result supports the hypothesis that down-regulation of genes required for respiration contributed to the altered fluconazole susceptibility of the cfo1 mutant. Overall, our data suggest that iron uptake and homeostasis play a key role in antifungal susceptibility and could be used as novel targets for combination treatment of cryptococcosis. Indeed, we found that iron chelation in combination with fluconazole treatment synergistically inhibited the growth of C. neoformans. (C) 2012 Elsevier Inc. All rights reserved.
ISSN
1087-1845
URI
https://hdl.handle.net/10371/165824
DOI
https://doi.org/10.1016/j.fgb.2012.08.006
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share