Publications

Detailed Information

Cellulose Nanofiber Matrix-Assisted 3D Printing : 셀룰로오스 나노섬유 매트릭스 지지 3차원 프린팅

DC Field Value Language
dc.contributor.advisor현진호-
dc.contributor.author신성철-
dc.date.accessioned2020-05-19T07:44:19Z-
dc.date.available2021-04-13T07:26:46Z-
dc.date.issued2020-
dc.identifier.other000000160237-
dc.identifier.urihttps://hdl.handle.net/10371/167481-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000160237ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :농업생명과학대학 바이오시스템·소재학부(바이오소재공학전공),2020. 2. 현진호.-
dc.description.abstractCellulose nanofibers (CNFs) are attracting material for a three-dimensional (3D) printing matrix due to excellent rheological characteristics. In 3D printing with CNFs, a nozzle moves through the viscoelastic CNF matrix and makes patterns with ink materials. Rheological properties of CNFs are related to various factors including fiber dimension and concentration of CNFs in the aqueous dispersion, and influence on the printing fidelity. The different morphology of CNFs was prepared by varying the degree of carboxymethylation with CNFs. The printing fidelity was evaluated by observing the shape of ink features that were printed directly inside the CNF matrix. The relationship between the rheological properties of the CNF matrix and the printing fidelity was investigated on the printing speed, strain fields, and yielded regions. The cell-containing bio-ink and hydrophobic silicon-based inks were printed in the CNF matrix in a complex structure with high printing fidelity. Amazingly, the structure printed freely in the CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. The CNF devices exhibited selective diffusion of molecules from the channel wall, indicating the applicability for the sensor and the cell culture platforms.-
dc.description.abstract본 논문에서는 셀룰로오스 나노섬유 하이드로겔을 3D 프린팅 매트릭스로 활용하기 위한 전략과 프린팅 충실도를 평가하기 위한 기준을 제시하였고, 건조 시 얇고 투명한 필름을 제조할 수 있다는 특성을 바탕으로 마이크로유체칩을 제조하였다.
셀룰로오스 나노섬유는 3차원 인쇄에 적합한 유변학적 특성으로 인해 최근 3D 프린팅 분야에서 주목을 받아왔으며, 3D 프린팅 잉크로의 활용 가능성이 높은 재료이다. 그러나 하이드로겔 잉크는 변형에 취약하여 기존의 프린팅 기술로는 3차원 구조물을 제조하는데 한계가 있어, 구조물을 지지해줄 수 있는 매트릭스 재료를 활용한 매트릭스 지원 3D 프린팅 기술이 제안되었다. 현재까지 셀룰로오스 나노섬유를 3D 프린팅 매트릭스로 활용하고자 하는 연구는 보고된 바가 없으며 본 연구에서는 셀룰로오스 나노섬유가 3D 프린팅 매트릭스로 활용되기 위한 최적의 조건을 탐색하였다.
셀룰로오스 나노섬유의 유변학적 특성은 섬유의 크기 및 농도에 의해 결정된다. 본 연구에서는 섬유의 크기를 카르복시메틸화를 통해 조절하였으며, 다양한 농도 조건에서의 프린팅 충실도를 평가하기 위한 기준을 제시하였다. 프린팅 충실도는 셀룰로오스 나노섬유 매트릭스와 혼화성의 차이를 보이는 친수성, 소수성 모델 잉크를 프린팅 하고 잉크의 형상을 관찰하여 평가하는 방식으로 진행하였다. 각이진 선을 프린팅 하고 각도의 날카로운 정도와 잉크의 단면 비율, 그리고 잉크 표면 거칠기를 분석하여 매트릭스의 유변학적 특성과 프린팅 충실도 간의 관계를 분석하였다. 이를 활용하여 셀룰로오스 나노섬유 매트릭스 내부에 바이오 잉크를 프린팅 할 수 있었으며 소수성 실리콘 기반 잉크로 복잡한 3차원 구조체를 제조할 수 있었다.
셀룰로오스 나노섬유는 프린팅 매트릭스로 활용될 수 있을 뿐만 아니라 간단한 건조과정을 통해 얇고 투명한 디바이스를 제조하기 최적화 되어있는 재료이다. 이러한 장점을 활용하여 셀룰로오스 나노섬유 기반의 마이크로유체칩을 제조할 수 있었다. 셀룰로오스 나노섬유의 투명도와 물질확산특성은 화학 센서뿐만 아니라 세포를 배양하고 세포의 거동을 분석할 수 있는 세포 배양 플랫폼으로도 활용될 수 있었다.
-
dc.description.tableofcontentsⅠ. Introduction 1

Ⅱ. Literature Survey 4
2.1. Various 3D printing technologies 4
2.2. Matrix-assisted 3D printing (MAP) 8
2.2.1. Rheological requirements for MAP 10
2.2.2. Various matrix systems for MAP 11
2.3. Cellulose 16
2.3.1. Cellulose nanofiber (CNF) 17
2.3.2. Extraction methods of CNF 18
2.3.3. Rheological properties of CNF 21
2.4. CNF as a 3D printing material 23
2.4.1. CNF as a rheology modifier 23
2.4.2. CNF as a reinforcement 24
2.5. CNF based devices 27
2.5.1. Transparent and thin device through dehydration 27
2.5.2. Electronic devices 28
2.5.3. Biological and chemical sensing devices 29
2.5.4. Cell culture devices 30

Ⅲ. Materials and Methods 32
3.1. Preparation and characterization of the CNF matrix 32
3.2. Preparation of various types of ink 33
3.2.1. Cross-linked polyacrylic acid-based model ink 33
3.2.2. CNF based bio-ink 34
3.2.3. Petroleum-jelly based removable ink 34
3.2.4. Silicone ink-based curable ink 34
3.3. Rheological properties of CNF matrices and inks 35
3.4. Matrix-assisted 3D printing of a single line 35
3.4.1. Matrix-assisted 3D printing of straight line 35
3.4.2. Matrix-assisted 3D printing of angled line 36
3.5. Matrix-assisted 3D printing of multi-lines 36
3.5.1. Matrix-assisted 3D printing of multi-lines 36
3.5.2. Particle Image Velocimetry (PIV) test 36
3.6. Living cell embedded bio-ink printing 37
3.7. Silicone actuator printing 37
3.8. Fabrication of CNF based open-channel microfluidic devices 38
3.8.1. Fabrication process of CNF microfluidic devices 38
3.8.2. CNF based pH sensor 39
3.8.3. CNF based heavy metal sensor 39
3.9. Fabrication of CNF based open cell culture platform 40
3.9.1. Hydrophobic treatment of CNF 40
3.9.2. Mass transfer test at the CNF layers 41
3.9.3. Cell culture on CNF microfluidic devices 41
3.10. Imaging 42

Ⅳ. Results and Discussion 43
4.1. Properties of carboxymethylated CNF matrix 43
4.2. Rheological properties of CNF matrix 52
4.2.1. Shear-thinning property of CNF matrix 52
4.2.2. Yielding property of CNF matrix 55
4.2.3. Creep and recovery properties of CNF matrix 58
4.3. Evaluation of printing fidelity in a single printing line feature 60
4.3.1. Evaluation of printing fidelity by sharpness of angled-line 60
4.3.2. Evaluation of printing fidelity by cross-sectional ratio 66
4.3.3. Evaluation of printing fidelity by straightness of line surface 69
4.3.4. Evaluation of printing fidelity with hydrophobic ink 74
4.4. Evaluation of printing fidelity in multi printing lines feature 82
4.4.1. Particle image velocimetry (PIV) test 82
4.4.2. Velocity magnitude around nozzle 86
4.4.3. Matrix composition and printing path effects on fidelity 88
4.5. Printing of various ink materials 90
4.5.1. Rheological properties of various ink materials 90
4.5.2. Living cell embedded 3D bio-printing 92
4.5.3. Feasibility test of printed silicone actuator 92
4.6. Fabrication of CNF based open-channel microfluidic devices 95
4.6.1. Feasibility test of microfluidic channel devices 97
4.6.2. Control of channel diameters 99
4.6.3. Dimension control of the microfluidic device 101
4.6.4. Feasibility of pH sensor 103
4.6.5. Colorimetric analysis of heavy metal ions 105
4.7. Fabrication of CNF based open cell culture platform 107
4.7.1. Evaluation of hydrophobicity of MTMS treated CNF 111
4.7.2. Diffusion of FITC-Dex to CNF channel layers 114
4.7.3. Cell viability of the CNF-based platform 117
4.7.4. Effect of cisplatin at the CNF-based platform 118

Ⅴ. Conclusion 121
Ⅵ. References 123
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc660.6-
dc.titleCellulose Nanofiber Matrix-Assisted 3D Printing-
dc.title.alternative셀룰로오스 나노섬유 매트릭스 지지 3차원 프린팅-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department농업생명과학대학 바이오시스템·소재학부(바이오소재공학전공)-
dc.description.degreeDoctor-
dc.date.awarded2020-02-
dc.identifier.uciI804:11032-000000160237-
dc.identifier.holdings000000000042▲000000000044▲000000160237▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share