Browse

Reverse Osmosis Membrane with Nanocarbon Materials : 나노카본 소재를 활용한 역삼투막

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
Kunzhou Li李昆洲
Advisor
김용협
Issue Date
2020
Publisher
서울대학교 대학원
Description
학위논문(박사)--서울대학교 대학원 :공과대학 기계항공공학부,2020. 2. 김용협.
Abstract
담수 자원은 인류가 생존하는 데 필수적인 자원이자 전세계 경제가 발전하는 데의 중요한 기둥이다. 그러나 인구가 증가하고 경제가 발전하며 기후 변화가 심해지면서 청결한 수자원이 부족하다는 위기가 세계적인 문제로 떠올리고 있다.
최근 몇 년간에 역삼투(RO)는 중요한 수처리 기술로 발전하면서 비전통적인 수원을 정화함으로써 청결한 담수의 공급을 증가할 수 있다는 길이 열리게 되었다. 지난 몇 십년 동안 역삼투 막의 유수량과 용질거절율이 계속 높아지기는 했지만 많은 에너지가 소모된다거나 오염되기 쉽다거나 하는 단점이 여전히 해결되지 못한 상태이다. 따라서 투수율을 높이고 에너지 소모를 줄이고 막의 구조와 안정성을 개선하여 오염 방지 능력을 제고한다는 등 면에서 더욱 많이 발전과 업그레이드가 필요하다고 생각한다. 본 연구는 지지층의 구조와 막 표면의 화학적인 성질을 개선하고 최적화함으로써 지지층이 폴리아미드(PA)활성층의 선택성과 투수량에 얼마나 많은 영향을 미치는지에 대해 연구하는 것을 목적으로 하였다.
(1) 지지층 표면의 화학적 성질과 기공크기, 다공성은 계면중합을 통해 형성된 활성층의 두께와 거칠기, 다리걸침구조에 영향을 미칠 수 있고 더 나아가 역삼투 막의 투수율과 제거율, 오염방지능성 등 막의 전체 성능에 영향을 미친다는 것은 주지의 사실이다. 높은 다공성을 가지는 지지층이 투수율을 높일 수 있지만 제거율은 떨어진다. 또한 좋은 친수성을 가지는 지지층은 투수율을 떨어트릴 수도 있다. 본 연구는 큰 구멍을 가지는 지지층 표면에 산화그래핀 레이어를 연결함으로써 수상 중의 MPD분자가 유기상으로 확산하는 것을 제어하고 지지층의 표면 친수성을 개선하여 비교적 매끄러운 PA층과 높은 투수율을 가지는 RO막을 형성하도록 하였다. 그 결과로, GO가 작을수록 RO막의 투수율이 높다는 것을 확인하였다. 또한 작은 GO를 사용하는 경우, 산화그래핀의 크기와 비슷한 구멍을 가지는 마이크로 필터 지지층을 이용해야만 가장 높은 제거율과 투수율을 확보할 수 있다는 것도 발견하였다.
(2) 매우 높은 투수율을 가지는 수직 정렬된 탄소 나노튜브 멤브레인(VACNT)은 매우 높은 다공성과 소수성을 가지기 때문에 새로운 RO막의 지지층으로 사용될 수 있을 것이다. 역삼투 막을 합성할 때, 우리는 VACNT를 지지층으로 사용하여 계면종합을 통해 폴리아미드(PA) 활성층을 VACNT 지지층 위에 제자리 합성하도록 하였다. 이러한 RO막이 15.5bar에서는 128.6LMH의 투수량과 98.3%의 제거율을 가지는 실험 결과를 확인하였다.
Freshwater is not only a necessary resource for human survival but also a pillar of the global economy. Reliable and sustainable supply of freshwater resources is essential for agriculture, industry, energy production and people's life. However, with population growth, economic development and climate change, the crisis of insufficient clean water resources has become a global problem. Improving the efficiency and effectiveness of water purification technology, to produce clean water and protect the environment in a sustainable manner, is the biggest and most serious challenge of this century.
In recent years, reverse osmosis (RO) has become a critical water treatment technology, which promises to greatly increase the supply of clean water through purification of nontraditional water sources. Although water flux and solute rejection by reverse osmosis membranes have continually improved over the past few decades, reverse osmosis techniques are still relatively energy intensive, non-selective and prone to fouling. Therefore, more development and upgrades are needed in terms of increasing water permeability to save energy, improving membrane structure and stability to be more resistant to fouling. Modern reverse osmosis (RO) membranes have composite structures, where a thin polymeric film is formed over a relatively thick, porous support membrane. This support membrane not only provides suitable mechanical stability for the RO film under high applied pressure, but more importantly, has a crucial influence on the performance of the in situ synthesized thin polymeric film. In the thesis, the influences of support layer on improve the selectivity and water flux of polyamide (PA) selective layer by improving and optimizing the structure and surface chemistry of the support layer was investigated.

(1) It is well known that the support membranes surface chemistry and pore size and porosity can influence the thickness, roughness, and cross-linked structure of the selective layer which formed by interfacial polymerization, thereby affecting the overall performance of the reverse osmosis membrane, including water flux, rejection and antifouling ability. A support layer with a large surface porosity can help to increase water flux but the salt rejection will decrease; a support layer with good hydrophilicity may result in a decrease in water flux.
In this work, by grafting a layer of graphene oxide on the surface of the support layer with large pores, the diffusion of MPD molecules in the aqueous phase in the support layer pores into the organic phase solution are controlled during the interfacial polymerization process by physically blocking & improving the hydrophilicity of the surface of the support layer. Thereby, a smoother PA layer and a RO membrane with a higher water flux can be formed.
Moreover, a variety of sizes of graphene oxide are applied to the surface of the support layer, and we found that the size of the graphene directly affects the water flux of the support layer. The smaller the graphene oxide sheets, the larger the water flux of the support layer due to the smaller size graphene has more edge length at the same mass. The selection of the microfiltration membrane support layer with an appropriate pore size for the small size of graphene oxide will result in optimal salt rejection and water flux.

(2) Vertically aligned carbon nanotube (VACNT) wall membrane with its ultrafast water permeability shows a great promise as a novel support layer for membranes because of its ultrahigh porosity and hydrophobicity. We utilize the wall membrane as a support layer in forming a reverse osmosis (RO) membrane. For the purpose, a polyamide (PA) selective layer is grown by interfacial polymerization directly onto the top surface of the VACNT support layer. This RO membrane delivers a flux of 128.6 liter m-2h-1 (LMH) and 98.3% salt rejection at 15.5bar, opening an avenue for a leap over the water permeability at the rejection level that has been pegged at 5 LMH bar-1over the past ten years. Formation of a thin PA layer by a modified preparation method and ultrahigh porosity of VACNT support membrane are the main factors for the high-performance RO membrane.
Language
eng
URI
https://hdl.handle.net/10371/167493

http://dcollection.snu.ac.kr/common/orgView/000000158814
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Mechanical Aerospace Engineering (기계항공공학부)Theses (Ph.D. / Sc.D._기계항공공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse