Browse

Development of on-site detection system using a bi-functional linker-based gold nanoparticle aggregation system : 이중기능링커 기반의 금 나노입자의 응집 시스템을 활용한 현장 검출법 개발

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
한정우
Advisor
최영진
Issue Date
2020
Publisher
서울대학교 대학원
Description
학위논문(박사)--서울대학교 대학원 :농업생명과학대학 농생명공학부,2020. 2. 최영진.
Abstract
현대사회에서 인간의 평균수명은 지속적으로 증가하고 있으며, 이에 따른 행복과 건강에 대한 관심이 크게 증가하고 있다. 전세계적인 이러한 현상은 자연스럽게 진단기술의 개발을 촉진시켰다. 특히, 바이오센서는 현장 진단용 기술로 큰 기대를 받고 있다. 분석물을 생체 인식 시스템을 이용하여 분석하는 장치인 바이오센서는 일반적으로 감지기, 변환기, 신호 분석 시스템 세 가지 요소로 구성된다. 바이오센서의 목표는 생물학적인 감지를 높은 민감도와 선택도로 구현하는 것이다. 의료 및 현장검사(point-of-care testing, POCT) 용을 시작으로 발전한 바이오센서의 진단기술은 식품안전, 군사, 환경 모니터링 등의 다양한 분야로 확대·응용되었다. 식품안전 분야에서의 바이오센서의 개발은 큰 어려움이 존재하는데, 그 이유로는 식품이 가지는 매우 다양하고 복잡한 matrix 때문이다. 즉, 식품은 종류도 다양하며, 그 안의 구성 matrix도 매우 복잡·다양해서 바이오센서의 작동을 어렵게 한다. 따라서, 식품 안전분야의 바이오센서의 개발은 식품에 대한 이해를 토대로 연구개발되어야 한다. 즉, 식품안전분야에서는 전처리 과정이 적으며, 식품의 matrix에 영향을 많이 받지 않으면서, 많은 양의 샘플을 처리할 수 있는 현장적용이 가능한 바이오센서의 개발이 필요하다. 또한, 현장 적용에 최적화되기 위해서는 장치의 소형화, 자동화, 간편화 등이 동반되어야 한다.
금 나노입자의 응집을 이용한 비색반응은 육안으로 신호분석을 할 수 있어서 특별한 분석장비가 필요하지 않다는 이유로 현장적용에 적합한 기술로 평가받고있다. 하지만 이 반응은 약 1010 ea/mL이상의 농도의 금 나노입자를 이용해야만 하는 점과 분석물의 감지와 신호분석이 동시에 일어나는 특성이 맞물려서 민감도가 좋지 않다는 한계점이 존재한다. 이에 따라서, 이중기능링커(bi-functional linker), 동일한 의미인 스위치어블 링커(switchable linker)를 사용한 새로운 금 나노입자의 응집 시스템은 금 나노입자의 응집과 분석물과의 반응을 서로 독립시켜서 이러한 문제점을 해결함으로써, 현장 적용에 적합한 바이오센서로서 대두되었다.
본 연구에서는 이중기능링커를 활용한 금 나노입자의 응집반응으로 토마토에서 살모넬라 균(Salomonella Typhimurium)을 간단한 조작으로 45분 이내에 10 cells/mL 이하로 검출할 수 있음을 보임으로서 식품산업현장에 적용가능성을 입증하였다. 또한, 1/10 희석한 serum에서 단백질 바이오마커인 prostate-specific antigen을 100 fg/mL의 수준까지 검출 가능함을 보임으로서 다양한 분석물에 적용할 수 있음을 보였다. 마지막으로, 3-way valve chamber와 주사기 필터를 적용한 소형화된 검출 장치를 통하여 살모넬라 균(Salomonella Typhimurium)을 검출함으로서, 이중기능링커의 금 나노입자 응집반응 시스템이 현장에 적용할 수 있음을 보였다. 물론 본 전략이 식품현장에서 사용하기 위해서는 자동화, 대량화, 안정성 등의 문제를 해결해야 할 것이다. 하지만, 간편하고, 민감하며, 매우 빠르게 분석물을 진단할 수 있다는 점에서 현장적용의 잠재력이 높다고 판단된다.
The average human life span is continuously increasing as are efforts worldwide to improve health and happiness, which has spurred the development of diagnostic technologies. In particular, great advances are being made in biosensors that enable on-site diagnosis. Biosensors, i.e., devices that examine analytes using biometric systems, typically consist of three components: detectors, transducers, and signal analysis systems. The goal for biosensors has evolved to enable biological sensing with high sensitivity and selectivity. The use of biosensor diagnostic technology developed for medical and point-of-care testing has been expanded and is now applied in various fields, including food safety, the military, and environmental monitoring. The development of biosensors in the field of food safety presents significant challenges because of the very diverse and complex matrices that characterize food. In other words, foods come in many varieties, and their composition matrices are complex and diverse, which makes it difficult for biosensors to operate. Therefore, biosensors in the field of food safety must be researched and developed based on our current understanding of food. Such a biosensor must require minimal pretreatment and be able to process a large number of samples without being affected by the food matrix. In addition, to be optimized for field application, the device must be miniature in size, automated, and simple to use.
Colorimetric methods that employ the strategy of gold nanoparticle (Au NP) aggregation have been determined to be suitable for field application because they can perform signal analysis using only the naked eye and require no specialized analytical equipment. However, these methods are limited by their poor sensitivity for the following reasons: First, color can be distinguished by the naked eye only when using Au NPs at a concentration of about 1011 ea/mL or more. Second, in general, Au NPs facilitate both detection and signal analysis. As a result, high concentrations of Au NPs require high concentrations of analytes for signal analysis. Accordingly, a novel Au NP aggregation system is proposed that uses a bi-functional linker (BL), which has the same function as a switchable linker, and thus solves this problem by separating the signal analysis step from the analyte detection step by the aggregation of Au NPs. In addition, a BL-based assay, which has advantages such as simple operation and requiring no washing step, has emerged as a biosensor suitable for application in the food industry.
In this study, the aggregation strategy of using Au NPs as a BL showed that Salmonella Typhimurium could be detected in tomatoes at concentrations of less than 10 cells/400 μL within 45 minutes through simple manipulation. This indicates that this strategy is applicable to the food industry. In addition, prostate-specific antigen, a protein biomarker, was detected at a concentration of 100 fg/mL in a serum diluted to 1/10, which indicates that this strategy could be applied to various analytes. Finally, by detecting Salmonella Typhimurium using a miniaturized detection device with a 3-way valve chamber and a syringe filter, the BL-based assay could be applied in the field. Of course, to qualify this strategy for use in the food field, issues related to automation, sample bulk-up, and stability must be addressed. However, the potential for field application is high due to this strategys simplicity, sensitivity, and rapid diagnosis of analytes.
Language
eng
URI
https://hdl.handle.net/10371/167608

http://dcollection.snu.ac.kr/common/orgView/000000161087
Files in This Item:
Appears in Collections:
College of Agriculture and Life Sciences (농업생명과학대학)Dept. of Agricultural Biotechnology (농생명공학부)Theses (Ph.D. / Sc.D._농생명공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse