Publications

Detailed Information

Fabrication of electrospun polyacrylonitrile nanofibers based transducer for chemical/biosensors application : 전기방사 폴리아크릴로니트릴 나노섬유 기반 트랜스듀서 제조 및 화학/바이오센서로의 응용

DC Field Value Language
dc.contributor.advisor장정식-
dc.contributor.author김우영-
dc.date.accessioned2020-05-19T07:52:49Z-
dc.date.available2020-05-19T07:52:49Z-
dc.date.issued2020-
dc.identifier.other000000158718-
dc.identifier.urihttps://hdl.handle.net/10371/167714-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000158718ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :공과대학 화학생물공학부(에너지환경 화학융합기술전공),2020. 2. 장정식.-
dc.description.abstractIn recent decades, there has been tremendous researches for developing one-dimensional (1D) nanomaterials used for sensor transducer, owing to their structural properties such as high aspect ratio and high specific surface area. Among diverse method to fabricate 1D nanomaterials, electrospinning has been widely utilized because of their simple usage and low operating temperature. Additionally, because the manufactured fibers come in a mat form, various applications are possible in itself. Although, multifarious synthesis methods have been studied to prepare 1D nanomaterials via electrospinning, Research into the decoration of metals or metal oxides on the surface of nanofibers and method of carbonize nanofibers to produce flexible and free-standing mats are still lacking.
This dissertation proposes the method to prepare diverse electrospun polyacrylonitrile nanofibers (PAN NFs) based composite materials for sensor application by decoration of metal or metal oxide and additional carbon. Firstly, shape controlled palladium nanoflower decorated polypyrrole/PAN NFs (Pd_PPy/PAN NFs) were prepared using electrospinning of PAN solution followed by polypyrrole vapor deposition polymerization (VDP) and electrodeposition of palladium nanoflowers. The shape of palladium was determined by controlling the sulfuric acid concentration in electrolyte during electrodeposition, and applied as a hydrogen peroxide sensor electrode material.
Secondly, chemical vapor deposition (CVD) and metal etching were adopted to decorate copper (Cu) derived carbon on carbon nanofiber (CNF). The structure of Cu derived carbon was determined by the type of Cu used, and protrusion shape was produced on CNFs when sphere type Cu was used. Then, platelet derived growth factor (PDGF)-B binding aptamer was immobilized on as prepared materials and applied as PDGF biosensor with high sensitivity and selectivity.
Finally, to fabricate manganese dioxide decorated carbon nanofiber (Mn@CNF), potassium permanganate was used as a precursor and chemically reduced by stirring and heat treatment. Using Mn@CNF as a transducer for sensor, the nerve gas agent simulant (DMMP) was detected with ultrasensitive.
In addition, the fact that the material produced in this dissertation exhibits electrical resistance and target analyte sensing performance that does not diminish despite of bending, offers the potential for flexible and free-standing substrate for sensor application.
-
dc.description.abstract최근, 높은 종횡비 및 비표면적과 같은 구조적 특성으로 인해 센서 트랜스듀서 물질로 1차원 나노물질을 이용하는 연구가 활발하게 진행되고 있다. 1D 나노 물질을 제조하는 다양한 방법 중, 전기 방사는 간단한 사용법과 낮은 작동 온도 때문에 널리 사용되어왔다. 또한, 제조 된 섬유는 매트 형태로되어 있기 때문에, 그 자체적으로 다양한 응용에 적용이 가능하다는 장점을 지닌다. 전기 방사를 통해 1D 나노 물질을 제조하기위한 다양한 합성 방법이 연구되어 왔지만, 나노 섬유에 금속 또는 금속 산화물의 도입해 복합나노재료를 만들거나 나노섬유를 탄화 후 유연하게 유지하는 방법에 대한 연구는 미진하다.
이 논문은 금속, 금속산화물 또는 탄소 소재를 전기방사 폴리아크릴로니트릴 나노섬유에 도입해 복합재료를 제조하는 방법에 대한 연구를 기술하였다. 우선, 폴리아크릴로니트릴 용액을 전기 방사해 제조한 나노섬유에 기상 증착 중합으로 폴리피롤을 코팅하였고, 이를 작동전극으로 하여 형상을 제어한 팔라듐 나노 플라워를 전기도금 방법을 이용해 도입하였다. 팔라듐의 형상은 전기도금 시 사용하는 전해질에서 황산 농도를 조절함으로써 결정되었다. 이렇게 제조한 물질은 과산화수소 센서 전극 재료로서 적용되었다.
두번째로, 화학 기상 증착 및 금속 식각 방법은 탄소 나노 섬유 상에 구리를 이용해 제조한 탄소를 도입하기 위해 사용하였다. 구리를 이용해 제조한 탄소의 구조는 사용한 구리 형상 종류에 의해 결정되었다. 그중 구 형상 구리를 사용했을 때 탄소나노 섬유 상에 돌기 형태의 탄소를 도입 할 수 있었다. 제조한 물질에 혈소판 유래 성장 인자 (PDGF) 결합 압타머를 고정시켜, 높은 감도 및 선택성을 갖는 바이오 센서로서 적용 하였다.
마지막으로, 이산화망간을 도입한 탄소나노섬유를 제조하기 위해, 과망간산 칼륨을 전구체로 사용하고 열처리 및 교반을 이용해 화학적으로 환원시켰다. 제조한 물질은, 신경 유도체인 디메틸 메틸포스포네이트 분자 검출용 화학센서의 트랜스듀서 물질로 적용하였다.
또한 이 논문에서 제조한 물질이 굽힘에도 불구하고 저하되지 않는 전기 저항 및 타겟 분석물질 감지 성능을 나타낸다는 사실을 통해 유연하고 독립된 기판 센서 물질로 활용 할 가능성을 제공하였다.
-
dc.description.tableofcontents1. Introduction 1
1.1. Background 1
1.1.1. Conducting polymer 1
1.1.1.1. Polypyrrole 3
1.1.1.2. Vapor deposition polymerization (VDP) 8
1.1.2. One-dimensional nanomaterials 10
1.1.2.1. Electrospinning 13
1.1.2.2. Electrospun polymer derived carbon nanomaterials 16
1.1.3. Composite materials 17
1.1.3.1. Noble metal/conducting polymer composite materials 18
1.1.3.2. Metal oxide/carbon composite materials 19
1.1.4. Electrodeposition 20
1.1.5. CVD graphene 22
1.1.6. Sensor application 24
1.1.6.1. Liquid electrolyte gated FET type sensor 26
1.1.6.1.1. Hydrogen peroxide (H2O2) sensor 28
1.1.6.1.2. Platelet-derived growth factor (PDGF) sensor 30
1.1.6.2. Chemiresistive sensor 31
1.1.6.2.1. DMMP gas sensor 33
1.1.6.3. Flexible sensor 34
1.2. Objectives and Outlines 35
1.2.1. Objectives 35
1.2.2. Outlines 35
2. Experimental Details 37
2.1. Flexible Palladium nanoparticle decorated electrospun polypyrrole/polyacrylonitrile nanofibers for hydrogen peroxide coalescing detection 37
2.1.1. Materials 37
2.1.2. Fabrication of Pd_PPy/PAN NFs 37
2.1.3. Electrical measurement of Pd_PPy/PAN NFs based non-enzyme sensor 38
2.1.4. Characterization 39
2.2. Copper derived CVD carbon/electrospun-carbon flexible and free-standing mat for PDGF biosensor 40
2.2.1. Materials 40
2.2.2. Fabrication of CuC/CNF mat 40
2.2.3. Electrical measurement of CuC/CNF mat aptamer sensor 41
2.2.4. Characterization 52
2.3. Mn@CNF flexible and free-standing mat for DMMP gas sensor. 43
2.3.1. Materials 43
2.3.2. Fabrication of Mn@CNF mat 43
2.3.3. Electrical measurement of Mn@CNF mat chemiresistive sensor 44
2.3.4. Characterization 45
3. Results and Discussion 46
3.1. Flexible Palladium nanoparticle decorated electrospun polypyrrole/polyacrylonitrile nanofibers for hydrogen peroxide coalescing detection 46
3.1.1. Fabrication of Pd_PPy/PAN NFs 46
3.1.2. Characterization of Pd_PPy/PAN NFs 54
3.1.3. Electrical properties of the shape controlled Pd_PPy/PAN NFs electrode 61
3.1.4. Real-time response of FET-type H2O2 sensor based on shape-controlled Pd_PPy/PAN NFs electrode 63
3.2. Copper derived CVD carbon/electrospun-carbon flexible and free-standing mat for PDGF biosensor 67
3.2.1 Fabrication of the Cu derived carbon/CNF mat 67
3.2.3. Characterization of the Cu derived carbon/CNF mat. 71
3.2.4. Fabrication of liquid-ion gated FET-type sensor electrode 77
3.2.3. Electrical properties of the CuC/CNF mat based sensor 83
3.2.4. Real-time response of the Apt-FlakeC/CNF and Apt-SP10C/CNF mat based sensor 8+
3.3. Mn@CNF flexible and free-standing mat for DMMP gas sensor 93
3.3.1. Fabrication of Mn@CNF mat 93
3.3.2. Characterization of Mn@CNF mat 98
3.3.3. Electrical properties and real-time responses of the Mn@CNF mat based sensor to DMMP gas 103
4. Conclusion 114
Reference 117
국문초록 151
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc660.6-
dc.titleFabrication of electrospun polyacrylonitrile nanofibers based transducer for chemical/biosensors application-
dc.title.alternative전기방사 폴리아크릴로니트릴 나노섬유 기반 트랜스듀서 제조 및 화학/바이오센서로의 응용-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department공과대학 화학생물공학부(에너지환경 화학융합기술전공)-
dc.description.degreeDoctor-
dc.date.awarded2020-02-
dc.identifier.uciI804:11032-000000158718-
dc.identifier.holdings000000000042▲000000000044▲000000158718▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share