Browse

Reductive treatment of fluoroarenes using zeolite supported Rh-based catalyst : Elucidating influence of chemical structure on reduction rate and defluorination
Rh-zeolite 촉매를 이용한 불화 방향족 탄화수소의 환원처리

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
안선영
Advisor
최정권
Issue Date
2020
Publisher
서울대학교 대학원
Keywords
FluoroareneHydrodefluorinationRhodium catalystStructure-reactivity relationships플루오로아렌탈불화반응로듐 촉매구조-반응 관계식
Description
학위논문 (석사) -- 서울대학교 대학원 : 공과대학 건설환경공학부, 2020. 8. 최정권.
Abstract
This study used zeolite supported Rh-based catalyst and hydrogen as a reductant to reduce fluoroarene, which is also a big part of the chemical industry. Rh/zeolite catalyst was applied for the reductive treatment of fluoroarenes with various structures. The experimented fluoroarenes were fluorobenzene, difluorobenzene, (difluoromethyl)benzene, (trifluoromethyl) -benzene, (pentafluoroethyl) benzene, fluorophenol, fluorotoluene, fluorobenzoic acid, and their pseudo-first-order reaction constant and defluorination yield were compared with each other. The reaction rate of fluorobenzene and difluorobenzene decreased in the order of one substituent (fluorobenzene), ortho (1,2-difluorobenzene), meta (1,3-difluorobenzene), and para (1,4-difluorobenzene). It was the same as the results of other papers. However, perfluoroalkyl groups, such as trifluoromethyl and pentafluoroethyl, did not react or the defluorination yield was lower than 30%, so the application of Rh catalyst had a limitation in the perfluorinated alkyl structure.
Multiple linear regression analysis was performed to elucidate the effect of structural characteristics of each fluoroarenes on their reaction constants and defluorination yield, except for (trifluoromethyl)benzene, 4-trifluoromethylphenol, (pentafluoroethyl)benzene. To perform multiple linear regression analysis, two or more independent variables were required, and variables capable of representing the structural characteristics of each fluoroarene were selected, such as σposition, bond dissociation energies (BDE), number of fluorine (No.F), and some chemical properties calculated by SPARC chemical calculator. As a result, the electron affinity, σposition, and No.F had a significant effect on the reaction rate constant (Log(kobs)), and the electron affinity, σposition, BDE, boiling point, and No.F was found to have a significant effect on defluorination yield (DeF yield*). The R2 value of each regression model was 0.795 for Log(kobs) and 0.816 for DeF yield*. Thus, the regression model for defluorination yield was better explained than for the reaction rate constant. In other words, the structural and chemical properties of fluoroarene had a greater effect on the final defluorination yield than the reaction rate. It suggested that not only the defluorination reaction but also hydrogenation occurred by Rh/zeolite catalyst, and the structural and chemical properties of fluoroarene can change the ratio of defluorination/hydrogenation reaction.
Since there were expected to be various intermediates that can be produced through hydrogenation reaction, some of the expected intermediates were quantified when 1-difluoromethyl-2-fluorobenzene and 1-difluoromethyl-3-fluorobenzene were experimented as starting materials. Difluoromethylbenzene, fluorotoluene, toluene, and methylcyclohexane were selected as the expected intermediates, and the concentration was quantified according to the reaction time. As a result, in both cases, the concentration ratio of dimethylbenzene and fluorotoluene compared to the initial concentration was measured very low, and the generated time was similar. In other words, both fluorine attached to the benzene and fluorine of dimethyl could be rapidly defluorinated, and it was suspected that unknown intermediates, which undergo only hydrogenation, not defluorination, might be generated. This phenomenon occurred when two functional groups were in the meta position, such as 1,3-difluorobenzene, 1-difluoromethyl-3-fluorobenzene, and 3-fluorophenol, except for 3-fluorotoluene.
본 연구에서는 화학 산업의 큰 부분을 차지하고 있는 플루오로아렌 (fluoroarene) 을 Rh 촉매를 이용하여 환원 처리하는 실험을 수행하였다. 로듐 촉매는 C-H 결합에 대한 C-F 결합을 감소시킬 수 있으며, 따라서 Rh/zeolite 촉매를 합성하여 다양한 구조의 플루오로아렌을 감소시켰다. 실험 대상 물질로 fluorobenzene, difluorobenzene, (difluoromethyl)benzene, (trifluoromethyl)benzene, (pentafluoroethyl)benzene, fluorophenol, fluorotoluene, fluorobenzoic acid 를 선정하여 물질 별 반응속도와 탈불화율을 비교하였다. 반응속도 상수 kobs는 log 를 취하여 변환하고, 탈불화율 (defluorination yield; DeF yield) 는 플루오린의 수로 표준화 하여 각 물질들의 반응성과 탈불화 정도를 비교하였다. fluorobenzene과 difluorobenzene 계열 (1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene) 에서는 작용기가 1개일 때, 2개일 때 ortho, meta, para 순서로 반응속도가 감소하는 결과를 얻었고, 이는 다른 논문들의 결과와 일치하는 결과였다. 그러나 trifluoromethyl, pentafluoroethyl과 같이 perfluoroalkyl에 대해서는 반응이 일어나지 않거나 탈불화율이 30% 이하로 낮게 나타나 과불화 알킬 구조에서는 Rh 촉매 적용에 한계가 있었다.
반응이 일어나지 않거나 탈불화 반응이 잘 일어나지 않았던 물질 ((trifluoromethyl)benzene, 4-trifluoromethylphenol, (pentafluoroethyl)-benzene) 을 제외한 플루오로아렌에 대하여 이들의 구조적 특징이 반응속도 및 탈불화율에 어떤 영향을 미쳤는지 알기 위해 다중회귀분석을 수행하였다. 다중회귀분석을 수행하기 위해서는 2개 이상의 독립변수가 필요했으며, 각 플루오로아렌의 구조적 특징을 대표할 수 있는 변수를 선정하였다. 본 연구에서 독립변수로는 σposition, Bond dissociation energies (BDE), 불소의 수 (No.F) 그리고 SPARC를 통해 계산한 물질의 화학적 특성값들이 선정되었고, 이 독립변수들을 조합하여 적용하면서 다중회귀분석을 수행하였다. 그 결과 반응속도상수 (Log(kobs)) 에는 전자친화도 (electron affinity), σposition, and No.F 가 유의미한 영향이 있었고, 탈불화율 (DeF yield*) 에는 전자친화도, σposition, BDE, 끓는점 (boiling point), No.F 가 유의미한 영향이 있는 것으로 나타났다. 각각의 회귀모델의 R2 값은 Log(kobs)에 대해 0.795, DeF yield*에 대해 0.816 이었으며, 본 연구에서 선정한 변수들로 회귀모델을 적용하였을 때 반응속도보다 탈불화율의 경향을 더 잘 설명할 수 있다는 결론을 얻었다. 즉, 플루오로아렌의 구조적, 화학적 특성은 반응속도보다 최종 탈불화율에 더 큰 영향을 미친다는 것이다. 이는 로듐 촉매에 의해 탈불화반응 뿐만 아니라 수소화반응 (hydrogenation) 또한 함께 일어나고 플루오로아렌의 구조적, 화학적 특성이 탈불화/수소화 반응의 비율을 변화시킬 수 있음을 시사한다.
수소화반응을 통해 생성될 수 있는 중간생성물질의 조합은 매우 많기 때문에 모두 정량할 수는 없었으나, 1-difluoromethyl-2-fluorobenzene 과 1-difluoromethyl-3-fluorobenzene 을 시작물질로 실험하였을 때 예상되는 중간생성물질로 difluoromethylbenzene, fluorotoluene, toluene, methylcyclohexane을 선정하여 반응 시간에 따라 농도를 정량하였다. 그 결과 두 경우 모두 초기 농도 대비 dimethylbenzene과 fluorotoluene의 농도 비율이 매우 낮게 측정되었으며 생성된 시간도 비슷한 수준으로 나타났다. 즉, 벤젠고리에 결합된 불소나 dimethyl의 불소 모두 빠른 속도로 탈불화 반응이 일어날 수 있었으며, 최종 탈불화율의 차이는 불소가 제거되지 않은 채로 수소화반응이 일어난 물질이 생성되었을 가능성이 있다. 이러한 현상은 1,3-difluorobenzene, 1-difluoromethyl-3-fluorobenzene, and 3-fluorophenol 과 같이 두 작용기가 meta 위치에 있을 때 발생하였으며, 3-fluorotoluene에서는 예외였다.
따라서 다양한 구조의 Fluoroarene의 경우 제거 속도와 탈불화율의 경향성은 각각 다른 방식으로 접근하여 처리 효율을 예측할 수 있을 것이며, 기존의 linear chain 구조를 가진 PFCs와는 다른 접근이 필요하다.
Language
eng
URI
https://hdl.handle.net/10371/169107

http://dcollection.snu.ac.kr/common/orgView/000000161427
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Civil & Environmental Engineering (건설환경공학부)Theses (Master's Degree_건설환경공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse