Publications

Detailed Information

Study on thermal management of power electronics system for electric vehicles using two-phase cooling : 비등냉각을 이용한 전기자동차용 전력전자시스템의 열 관리에 대한 연구

DC Field Value Language
dc.contributor.advisor김민수-
dc.contributor.author엄준영-
dc.date.accessioned2020-10-13T02:39:37Z-
dc.date.available2020-10-13T02:39:37Z-
dc.date.issued2020-
dc.identifier.other000000161702-
dc.identifier.urihttps://hdl.handle.net/10371/169143-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000161702ko_KR
dc.description학위논문 (석사) -- 서울대학교 대학원 : 공과대학 기계공학부, 2020. 8. 김민수.-
dc.description.abstractThe necessity of both higher power density and miniaturization of power electronics is on the rise, and accordingly, thermal management of it becomes an important issue with the expansion of the electric vehicle industry. Boiling heat transfer has a higher heat transfer coefficient than normal single-phase heat transfer, and the cooling system has excellent cooling performance because it absorbs most of the heat as the phase change energy of the working fluid. As the power electronics require still more electrical energy transfer, it is expected that conventional water-cooled system will reach limit of its thermal management in lowering the peak temperature and maintaining uniform temperature distribution in the electric device at the same time.
In order to overcome these difficulties, two-phase cooling system with pin-fin type heat sink using refrigerant as a working fluid is proposed instead of the conventional single-phase water-cooled system. By removing high heat flux through two-phase cooling, it is possible to maintain a uniform device temperature within the temperature range allowed for the device even at high power level conditions. In particular, many studies have been conducted using dielectric liquid as a working fluid to apply a boiling heat transfer cooling system to the electric and electronic fields. In this study, Infinions IGBT module (inverter) for hybrid electric vehicle (HEV) with pin-fin type heat sink was adopted as an experimental apparatus, and HFE-7100 which boils under operating condition of the power electronics was selected as a refrigerant.
In order to calculate the amount of heat generation for the power electronics, electric power transfer and loss model was developed for the light-duty electric vehicle. As result of the simulation, the power loss was implemented through the heater attached to the power electronics module with heat sink. The experiment was conducted by changing the working fluid, water and HFE-7100, and the temperature and distribution of it were compared. The experimental results show that two-phase cooling system using the refrigerant showed lower peak temperature with reasonable uniformity, which indicates that the life and reliability of the device would be improved.
-
dc.description.abstract전기자동차의 전력전자 시스템의 고출력화 및 소형화의 필요성이 대두되고 있으며, 이에따라 전력전자시스템의 열 관리는 전기자동차 산업의 확장과 함께 중요한 이슈가 되고 있다.
본 연구에서는 전기자동차의 전력전자 시스템을 구성하는 요소 중 하나인 인버터를 효과적으로 냉각하는 방법으로써 HFE-7100 냉매를 이용한 2상 비등 냉각방식을 제시하여, 인버터 작동온도 및 내부온도 편차를 줄일 수 있음을 보이는 연구를 진행하였다.
또한, 인버터의 발열량을 예측하기 위해 시뮬레이션 연구를 진행하였다. 여러 가지 주행조건에서 필요로 하는 모터의 전류를 다양한 제어방법을 통해 계산하였고, 최종적으로 자동차의 주행 조건 별 인버터에서 발생하는 전도 열 손실, 스위칭 손실을 산출하는 모델을 제시하였다.
HFE-7100 냉매를 이용한 비등 냉각방식을 차량용 인버터에 적용하는 실험을 진행하였고, 그 결과를 기존에 사용하던 방식인 수냉식 냉각방식을 적용한 실험 결과와 비교하였다. 그 결과, 냉매 비등 냉각방식이 수냉식 냉각방식보다 더 적은 펌프 소모동력을 통해, 인버터가 더 낮은 평균온도 및 균일한 온도분포를 보임을 확인하였다.
전기자동차의 엔진역할을 하는 전력전자 시스템의 구성품 중 하나인 인버터를 효과적으로 냉각함으로써, 인버터의 작동온도를 낮추어 시스템 안정성을 높이고 내부의 온도 편차에 의한 물리적인 변형을 줄여 제품의 수명과 신뢰성을 향상시킬 수 있다. 또한 미래에 전력전자 시스템이 에너지의 고밀도화, 시스템의 소형화를 이루어 내고, 전력전자시스템 냉각에 대한 잠재적인 비용절감효과를 가져오기 위해서는 냉매를 이용한 비등 냉각방식이 적절한 해결책이 될 수 있음을 증명하였다.
-
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Background of the study 1
1.2 Literature survey 6
1.2.1 Jet impingement and spray cooling method 6
1.2.2 Two-phase cooling method for IGBT module 7
1.3 Objectives and scopes 9
Chapter 2. Numerical model for predicting heat generation of inverter module 10
2.1 Losses of power semiconductor 10
2.2 Numerical model 14
2.2.1 Purpose 14
2.2.2 Automotive dynamics 14
2.2.3 Motor and inverter input current 15
2.2.4 Total power loss of inverter 20
Chapter 3. Experimental results of water single-phase cooling and HFE-7100 two-phase cooling. 25
3.1 Experimental setup 25
3.1.1 Experimental plans 25
3.1.2 Heating module cooling system 26
3.2 Experimental method 40
3.2.1 Measurement target 40
3.2.2 Experimental condition 40
3.2.3 Experimental cases 46
3.3 Experimental results 49
3.3.1 Experimental results of water single-phase cooling and HFE-7100 two-phase cooling 49
3.3.2.1 Average temperature and maximum temperature difference 57
3.3.2.2 Temperature uniformity 63
Chapter 4. Conclusion 70
References 72
Abstract (Korean) 80
-
dc.language.isokor-
dc.publisher서울대학교 대학원-
dc.subjectElectric vehicle-
dc.subjectPower electronics system-
dc.subjectTwo-phase cooling-
dc.subjectPin-fin type heat sink-
dc.subjectThermal management-
dc.subjectHFE-7100-
dc.subject전기자동차-
dc.subject전력전자시스템-
dc.subject비등냉각-
dc.subjectPin-fin형 방열판-
dc.subject열 관리-
dc.subject.ddc621-
dc.titleStudy on thermal management of power electronics system for electric vehicles using two-phase cooling-
dc.title.alternative비등냉각을 이용한 전기자동차용 전력전자시스템의 열 관리에 대한 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJun Young Eom-
dc.contributor.department공과대학 기계공학부-
dc.description.degreeMaster-
dc.date.awarded2020-08-
dc.identifier.uciI804:11032-000000161702-
dc.identifier.holdings000000000043▲000000000048▲000000161702▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share