Publications

Detailed Information

Development of mechanistic boiling heat partitioning model for horizontal tube under natural convection : 자연대류 조건의 기구학적 수평 전열관 비등 열전달 모델 개발

DC Field Value Language
dc.contributor.advisor조형규-
dc.contributor.author김재순-
dc.date.accessioned2020-10-13T02:44:37Z-
dc.date.available2020-10-13T02:44:37Z-
dc.date.issued2020-
dc.identifier.other000000162895-
dc.identifier.urihttps://hdl.handle.net/10371/169199-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000162895ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 에너지시스템공학부, 2020. 8. 조형규.-
dc.description.abstractRecently, new passive safety concepts have been proposed to enhance the systems performance and reliability that mostly incorporate shell-and-tube type heat exchangers in various configurations. Especially, the boiling phenomena within the heat exchanger geometry need to be examined experimentally and analytically because the heat transfer is significantly dependent on the configuration.
The heat-partitioning model is mechanistic boiling model and can directly reflect the mechanism of vapor bubble generation and actual phenomena. In this model, the boiling heat transfer can be calculated from bubble-related parameters such as the volume, velocity, frequency, and other influencing factors. Because of these advantages, it is currently widely used for predicting boiling heat transfer in computational fluid dynamics (CFD) codes. The bubbles generated on the horizontal tube display different characteristics depending on the generation location. This characteristic of the bubble behavior directly affects the boiling heat transfer. Thus, a mechanistic boiling model with a detailed heat transfer mechanism for boiling is needed to consider the bubble motion
However, previous mechanistic boiling models were mostly developed for upward-facing plate surfaces or vertical tubes. Also, previous studies did not consider the curvature effect of a horizontal tube. Only Sateesh et al. (2005) considered the curvature effect and sliding of bubbles when modeling boiling heat transfer for a horizontal tube. However, their sub-models rely on a simplified analysis of the sliding bubble motion rather than on experimental data. In this context, appropriate sub-models explicitly applicable to horizontal tube boiling have not yet been proposed. Besides, the bubble life-cycle related parameters (e.g. bubble growth model, bubble velocity model, bubble departure model, bubble departure frequency model, bubble lift-off model, sliding length and area, and sliding interactions) have not been validated or experimentally conducted for use in horizontal tube conditions.
Therefore, the main objectives of the present work were developing the heat partitioning model for the horizontal tube. For this goal, single bubble boiling experiments on the horizontal tube outside were conducted. A series of experiments were conducted to observe the bubble behavior under saturated boiling conditions on the outside of a horizontal tube. Through the experiment, bubble growth rate, bubble velocity, contact diameter, bubble departure frequency, bubble departure diameter, etc. were obtained. Also bubble sub-models were developed based on the results. A specially devised heater was fabricated for visualization experiment and boiling bubbles were generated along a thin heated surface to facilitate observation of a single bubbles motion. Also, an image processing methodology for the analysis of experimental results was developed. By taking advantage of bubble incipience in the controlled area, accurate measurement of the dynamic bubble motion parameter became feasible with a digital image processing technique.
Along with the development of the bubble sub-models, the force balance model was modified to cylindrical coordinates to predict the sliding bubble behavior considering the curvature effect. The force balance model was validated by comparison of the predicted bubble velocity with the experimental data. In addition, a bubble departure diameter model was developed, and the bubble radius model and the frequency model were closed using the experimental results. Besides, the bubble merging, the lift-off diameter, and the distribution of nucleation sites, which is difficult to simplify due to the complex characteristics of the boiling phenomenon, were modelled through numerical method. Combining the sub-models, the mechanistic heat transfer model was established by determining the area ratio and heat flux for each heat transfer mechanism.
Moreover, the developed model was validated against to various previous horizontal tube experiments and PASCAL experiments in which pressure and subcooling continued to change. As a validation results, experimental results were reasonably well predicted by the developed boiling heat transfer model.
This study presents experimental techniques and measurement results for observing vapor bubble sliding phenomena, deriving the force balance equation, sub-model development results, heat transfer model development results, and validation results. It is expected that the developed model can be used to improve the boiling heat transfer model of system analysis codes or CFD model with the coupling method in the future.
-
dc.description.abstract최근에는 원자로 계통의 성능과 건전성 향상을 위해서 shell-and-tube 타입의 열교환기를 포함하여 다양한 형상의 피동안전계통이 개발되고 있다. 열교환기는 그 형태에 따라 비등 열전달량이 크게 좌우되기 때문에 정확한 계통의 성능을 평가하기 위해서는 실험과 분석을 통해 충분히 검증되어야 한다.
열분배 모델 (the heat-partitioning model)은 기구학적 비등열전달 모델 (the mechanistic boiling heat transfer model)의 하나로 실제 비등 열전달 현상의 원리에 기반하고 있다. 모델은 비등열전달이 일어나는 원리인 증발 (evaporation), 과도열전도 (transient conduction), 단상대류 (single-phase convection)의 총 합으로 전체 벽면열전달량을 계산하게 되며, 각 원리마다 주요 기포 변수 서브모델들이 직접적으로 포함된다. 열분배 모델은 원리에 기반한 특징으로 인해 좋은 적용성을 인정받아 현재 CFD (computational fluid dynamics)등의 비등열전달 예측에 널리 사용되고 있다.
본 연구의 대상인 수평관 열교환기에서는 기포의 생성지점 위치에 따라 다양한 기포의 거동과 특성을 보이는 특징이 있다. 열분배 모델에서는 기포의 거동이 직접적으로 비등열전달에 반영이 되어 전체 열전달량 예측에 영향을 미친다. 따라서 열교환기의 형상과 구조적 특성을 반영한 실험과 검증에 기반하여 기포거동 서브모델들이 개발되고 반영되어야 한다.
그러나 기존의 열분배모델은 대부분 수직관이나 평면 구조를 대상으로 연구되었다. 일부 모델이 수평관에 대해 사용될 수 있다고 주장하고 있으나, 이들 모델은 수평관 실험에 기반하지 않은 채 수평관의 구조적 특징이 고려되지 않은 서브모델들을 사용하였거나, 과도하게 단순화된 가정들에 기반하고 있다. 이는 기존의 연구에서 수평관에서의 단일 기포 실험이 아직 실시되거나 검증되지 않았기 때문이다.
따라서 본 연구는 수평관에서의 기구학적 비등열전달 개발을 목표로 하였다. 이를 위해서 수평관 외벽에서의 단일 비등기포 실험을 실시하여 기포 거동과 관련된 주요 변수 (기포 성장률, 기포 속도, 접촉지름, 기포이탈빈도, 기포 이탈 직경 등)를 취득하였다. 가시화 실험을 위해서 얇은 가열면의 특수 히터를 개발하여 단일 기포 거동의 관측을 용이하게 하였으며, 양 방향에서 촬영한 기포 영상의 이미지 분석방법론을 개발하여 실험 결과를 분석하였다.
실험 결과를 근거로 이들 주요 변수의 서브모델을 독립적으로 개발하거나 기존 모델의 수평관 적용 가능성을 검증하였다. 또한 기존에 수직면을 대상으로 개발된 힘분석모델(the force balance model)을 수평관 형상에 대응하는 원통좌표계(cylindrical coordinate system)에 맞게 유도하여 곡률 효과를 고려한 단일기포의 거동과 속도 예측에 사용하였다. 또한 현상적으로 복잡한 특성으로 인해 해석적으로 다루기 어려운 부상직경 (lift-off diameter), 기포생성지점분포 (distribution of nucleation sites), 기포합병 (bubble merging)등은 수치적으로 모델링 (numerical modelling)하였다. 이렇게 검증 및 개발한 서브모델과 수치적 모델링을 통해 수평관에서의 기구학적 비등열전달 모델을 제시하였다.
개발한 모델은 다양한 지름을 가진 수평관에서 실시된 기존 연구들과, 다양한 압력과 과냉도를 가진 KAERI의 PASCAL 실험 결과를 통해 검증하였다. 검증 결과, 모델을 통해 실험 결과가 타당한 수준에서 예측되고 있음을 확인하였다.
본 연구는 비등 기포 활주 현상에 대한 실험방법론, 실험 결과, 서브모델 개발, 기구학적 비등열전달 모델 개발과 검증결과를 다루고 있다. 이를 통해서 적절한 예측 성능을 지닌 수평관 비등열전달 모델을 개발하였고, 제시한 모델은 비등열전달 예측에 단일적으로 사용될 뿐만 아니라, 추후 시스템 코드나 상용 CFD 코드와의 연계를 통해 넓은 확장성을 지닐 수 있을 것으로 판단된다.
-
dc.description.tableofcontentsChapter 1 Introduction 0
1.1 Background and motivation 0
1.2 The objective of the present study 8
Chapter 2 Experiment 16
2.1 Purpose of the experiment 16
2.2 Experimental apparatus 17
2.2.1 Experimental loop 17
2.2.2 Test section 17
2.2.3 Measurement devices 18
2.2.4 Imaging devices 18
2.2.5 Image processing methodology 19
2.2.6 Verification of the image processing 20
2.3 Narrow heater for single bubble experiment 22
2.3.1 Design and fabrication of special heaters 22
2.3.2 Surface characteristics 22
2.3.3 Artificial cavity 23
2.4 Preliminary experiment results 23
2.4.1 Sensitivity test on different heating width 23
2.4.2 Effect of the existence of an artificial cavity 24
2.4.3 Effect of surface material (Polyimide and copper surface) 25
2.5 Test matrix 25
Chapter 3 Experimental results and discussions 38
3.1 Boiling phenomenon on the horizontal tube heater 38
3.2 Bubble departure frequency 39
3.3 Bubble size parameters 40
3.3.1 Bubble volume growth 40
3.3.2 Contact diameter 43
3.3.3 Departure diameter 44
3.3.4 Lift-off diameter 45
3.4 Bubble velocity 47
Chapter 4 Sub-model development and validations 62
4.1 Development and validation of the mechanistic modified force balance model 62
4.1.1 Modified force balance model and bubble velocity prediction 62
4.1.2 Local liquid velocity experiment using air bubble in water 67
4.1.3 Validation of suggested velocity prediction model 69
4.2 Closure of bubble growth model 72
4.3 Development of bubble departure diameter and departure time model 75
4.3.1 Development of bubble departure model using a modified force balance model 75
4.3.2 Validation of developed departure diameter model and comparison with existing models 78
4.3.3 Development of bubble departure time 80
4.4 Closure of the bubble frequency model 82
4.5 Variables that require numerical modeling- 83
Chapter 5 Numerical modeling of bubble tracking, merger, and wall heat partitioning 96
5.1 Concepts of numerical modeling 96
5.2 Sub-models application on numerical model 98
5.2.1 Single-phase convection model 98
5.2.2 Nucleation site density 99
5.2.3 Bubble growth model 100
5.2.4 Bubble velocity model 101
5.2.5 Bubble frequency model 101
5.2.6 Area of influence 101
5.2.7 Contact diameter 102
5.3 Assumptions of the numerical model 103
5.3.1 Model application of lower half of horizontal tube 104
5.3.2 Model application of upper half of horizontal tube 104
5.4 Description of the calculation procedure 104
5.4.1 Step 1. Bubble initial information calculation 105
5.4.2 Step 2. Bubble merger calculation 105
5.4.3 Step 3. Transient conduction calculation 106
5.4.4 Calculation result analysis 107
5.4.5 Monte-Carlo method 109
5.4.6 Normal distribution test and Chi-square test 110
Chapter 6 Calculation results and validation 125
6.1 Difference in calculation results according to site distribution 125
6.2 Validation of PASCAL experiment 127
6.3 Validation of various tube diameters through other studies 129
6.4 Sensitivity studies 132
6.4.1 Bubble frequency 132
6.4.2 Area of influence 133
6.4.3 Contact diameter 134
6.4.4 Coalescence time 135
Chapter 7 Summary and conclusions 155
7.1 Summary 155
7.2 Suggested future work 156
Nomenclature 159
References 163
Appendix A. Initial bubble parameters calculation code 172
Appendix B. Bubble velocity prediction code 174
Appendix C. Bubble merger code 179
Appendix D. Transient conduction calculation code 183
국문 초록 187
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectBoiling-
dc.subjectHorizontal tube-
dc.subjectWall heat flux-
dc.subjectMechanistic model-
dc.subjectHeat partitioning model-
dc.subjectFPCB heater-
dc.subjectSingle bubble-
dc.subjectNatural convection-
dc.subjectSliding bubble-
dc.subjectForce balance model-
dc.subjectBubble velocity-
dc.subjectBubble merge-
dc.subjectBubble tracking-
dc.subjectnucleation sites distribution-
dc.subjectMonte-Carlo method-
dc.subjectPAFS-
dc.subjectPASCAL-
dc.subject비등-
dc.subject수평관-
dc.subject벽면열속-
dc.subject기구학적 비등모델-
dc.subject열분배모델-
dc.subjectFPCB-
dc.subject단일기포-
dc.subject자연 대류-
dc.subject활주기포-
dc.subject힘분배모델-
dc.subject기포속도-
dc.subject기포합병-
dc.subject기포추적-
dc.subject핵비등생성지점분포-
dc.subject몬테칼로방법론-
dc.subject.ddc622.33-
dc.titleDevelopment of mechanistic boiling heat partitioning model for horizontal tube under natural convection-
dc.title.alternative자연대류 조건의 기구학적 수평 전열관 비등 열전달 모델 개발-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department공과대학 에너지시스템공학부-
dc.description.degreeDoctor-
dc.date.awarded2020-08-
dc.contributor.major원자핵공학과-
dc.identifier.uciI804:11032-000000162895-
dc.identifier.holdings000000000043▲000000000048▲000000162895▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share