Publications

Detailed Information

User Experience Enhancement on Smartphones using Wireless Communication Technologies

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

최준영

Advisor
박세웅
Issue Date
2020
Publisher
서울대학교 대학원
Keywords
Wi-Fi HandoffBLELocalizationPath EstimationDead ReckoningSimultaneous Localization and Mapping (SLAM)Indoor NavigationSmartphones
Description
학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박세웅.
Abstract
Recently, various sensors as well as wireless communication technologies such as
Wi-Fi and Bluetooth Low Energy (BLE) have been equipped with smartphones. In
addition, in many cases, users use a smartphone while on the move, so if a wireless
communication technologies and various sensors are used for a mobile user, a better
user experience can be provided. For example, when a user moves while using Wi-Fi,
the user experience can be improved by providing a seamless Wi-Fi service. In addition,
it is possible to provide a special service such as indoor positioning or navigation
by estimating the users mobility in an indoor environment, and additional services
such as location-based advertising and payment systems can also be provided. Therefore,
improving the user experience by using wireless communication technology and
smartphones sensors is considered to be an important research field in the future.
In this dissertation, we propose three systems that can improve the user experience
or convenience by usingWi-Fi, BLE, and smartphones sensors: (i) BLEND: BLE
beacon-aided fast Wi-Fi handoff for smartphones, (ii) PYLON: Smartphone based Indoor
Path Estimation and Localization without Human Intervention, (iii) FINISH:
Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance.
First, we propose fast handoff scheme called BLEND exploiting BLE as secondary
radio. We conduct detailed analysis of the sticky client problem on commercial smartphones
with experiment and close examination of Android source code. We propose
BLEND, which exploits BLE modules to provide smartphones with prior knowledge
of the presence and information of APs operating at 2.4 and 5 GHz Wi-Fi channels.
BLEND operating with only application requires no hardware and Android source code
modification of smartphones.We prototype BLEND with commercial smartphones and
evaluate the performance in real environment. Our measurement results demonstrate
that BLEND significantly improves throughput and video bitrate by up to 61% and
111%, compared to a commercial Android application, respectively, with negligible
energy overhead.
Second, we design a path estimation and localization system, termed PYLON,
which is plug-and-play on Android smartphones. PYLON includes a novel landmark
correction scheme that leverages real doors of indoor environments consisting of floor
plan mapping, door passing time detection and correction. It operates without any user
intervention. PYLON relaxes some requirements for localization systems. It does not
require any modifications to hardware or software of smartphones, and the initial location
of WiFi APs, BLE beacons, and users. We implement PYLON on five Android
smartphones and evaluate it on two office buildings with the help of three participants
to prove applicability and scalability. PYLON achieves very high floor plan mapping
accuracy with a low localization error.
Finally, We design a fully-automated navigation system, termed FINISH, which
addresses the problems of existing previous indoor navigation systems. FINISH generates
the radio map of an indoor building based on the localization system to determine
the initial location of the user. FINISH relaxes some requirements for current
indoor navigation systems. It does not require any human assistance to provide navigation
instructions. In addition, it is plug-and-play on Android smartphones. We implement
FINISH on five Android smartphones and evaluate it on five floors of an office
building with the help of multiple users to prove applicability and scalability. FINISH
determines the location of the user with extremely high accuracy with in one step.
In summary, we propose systems that enhance the users convenience and experience
by utilizing wireless infrastructures such as Wi-Fi and BLE and various smartphones
sensors such as accelerometer, gyroscope, and barometer equipped in smartphones.
Systems are implemented on commercial smartphones to verify the performance
through experiments. As a result, systems show the excellent performance that
can enhance the users experience.
Language
eng
URI
https://hdl.handle.net/10371/169265

http://dcollection.snu.ac.kr/common/orgView/000000162305
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share