Browse

Fast Personalized PageRank Computation on Very Large Graphs
큰 그래프 상에서의 개인화된 페이지 랭크에 대한 빠른 계산 기법

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
박성찬
Advisor
이상구
Issue Date
2020
Publisher
서울대학교 대학원
Keywords
Graph AnalysisPageRankPersonalized PageRankRandom WalkPower IterationOptimizationAlgorithm그래프 분석페이지랭크개인화된 페이지랭크랜덤 워크거 듭제곱법최적화알고리즘
Description
학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 이상구.
Abstract
Computation of Personalized PageRank (PPR) in graphs is an important function that is widely utilized in myriad application domains such as search, recommendation, and knowledge discovery. Because the computation of PPR is an expensive process, a good number of innovative and efficient algorithms for computing PPR have been developed. However, efficient computation of PPR within very large graphs with over millions of nodes is still an open problem. Moreover, previously proposed algorithms cannot handle updates efficiently, thus, severely limiting their capability of handling dynamic graphs. In this paper, we present a fast converging algorithm that guarantees high and controlled precision. We improve the convergence rate of traditional Power Iteration method by adopting successive over-relaxation, and initial guess revision, a vector reuse strategy. The proposed method vastly improves on the traditional Power Iteration in terms of convergence rate and computation time, while retaining its simplicity and strictness. Since it can reuse the previously computed vectors for refreshing PPR vectors, its update performance is also greatly enhanced. Also, since the algorithm halts as soon as it reaches a given error threshold, we can flexibly control the trade-off between accuracy and time, a feature lacking in both sampling-based approximation methods and fully exact methods. Experiments show that the proposed algorithm is at least 20 times faster than the Power Iteration and outperforms other state-of-the-art algorithms.
그래프
내에서 개인화된 페이지랭크 (P ersonalized P age R ank, PPR 를 계산하는 것은 검색 , 추천 , 지식발견 등 여러 분야에서 광범위하게 활용되는 중요한 작업 이다 . 개인화된 페이지랭크를 계산하는 것은 고비용의 과정이 필요하므로 , 개인화된 페이지랭크를 계산하는 효율적이고 혁신적인 방법들이 다수 개발되어왔다 . 그러나 수백만 이상의 노드를 가진 대용량 그래프에 대한 효율적인 계산은 여전히 해결되지 않은 문제이다 . 그에 더하여 , 기존 제시된 알고리듬들은 그래프 갱신을 효율적으로 다루지 못하여 동적으로 변화하는 그래프를 다루는 데에 한계점이 크다 . 본 연구에서는 높은 정밀도를 보장하고 정밀도를 통제 가능한 , 빠르게 수렴하는 개인화된 페이지랭크 계산 알고리듬을 제시한다 . 전통적인 거듭제곱법 (Power 에 축차가속완화법 (Successive Over Relaxation) 과 초기 추측 값 보정법 (Initial Guess 을 활용한 벡터 재사용 전략을 적용하여 수렴 속도를 개선하였다 . 제시된 방법은 기존 거듭제곱법의 장점인 단순성과 엄밀성을 유지 하면서 도 수렴율과 계산속도를 크게 개선 한다 . 또한 개인화된 페이지랭크 벡터의 갱신을 위하여 이전에 계산 되어 저장된 벡터를 재사용하 여 , 갱신 에 드는 시간이 크게 단축된다 . 본 방법은 주어진 오차 한계에 도달하는 즉시 결과값을 산출하므로 정확도와 계산시간을 유연하게 조절할 수 있으며 이는 표본 기반 추정방법이나 정확한 값을 산출하는 역행렬 기반 방법 이 가지지 못한 특성이다 . 실험 결과 , 본 방법은 거듭제곱법에 비하여 20 배 이상 빠르게 수렴한다는 것이 확인되었으며 , 기 제시된 최고 성능 의 알고리 듬 보다 우수한 성능을 보이는 것 또한 확인되었다
Language
eng
URI
https://hdl.handle.net/10371/169306

http://dcollection.snu.ac.kr/common/orgView/000000163405
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Computer Science and Engineering (컴퓨터공학부)Theses (Ph.D. / Sc.D._컴퓨터공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse