Browse

Expression of Arabidopsis pathogenesis-related genes during nematode infection

Cited 99 time in Web of Science Cited 103 time in Scopus
Authors
Hamamouch, Noureddine; Li, Chunying; Seo, Pil Joon; Park, Chung-Mo; Davis, Eric L.
Issue Date
2011-05
Citation
Molecular Plant Pathology, Vol.12 No.4, pp.355-364
Abstract
P>The expression pattern of pathogenesis-related genes PR-1 to PR-5 was examined in the roots and leaves of Arabidopsis thaliana plants on infection with beet-cyst (Heterodera schachtii) and root-knot (Meloidogyne incognita) nematodes. During H. schachtii parasitism of Arabidopsis, the expression of PR-1, PR-2 and PR-5, which are considered to be markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was induced in both roots and leaves of infected plants. In addition, the expression of PR-3 and PR-4, which are used as markers for jasmonic acid (JA)-dependent SAR, was not altered in roots, but in the leaves of H. schachtii-infected plants, the expression PR-3 was induced, whereas the expression of PR-4 was down-regulated. During M. incognita infection of Arabidopsis, the expression of PR-1, PR-2 and PR-5 was highly induced in roots, as was PR-3 to a lesser extent, but the expression of PR-4 was not altered, indicating that infection with M. incognita activated both SA- and JA-dependent SAR in roots. However, all PRgenes examined (PR-1 to PR-5) were down-regulated in the leaves of M. incognita-infected plants, suggesting the suppression of both SA- and JA-dependent SAR. Furthermore, constitutive expression of a single PR in Arabidopsis altered the transcription patterns of other PR genes, and the over-expression of PR-1 reduced successful infection by both H. schachtii and M. incognita, whereas the over-expression of PR-3 reduced host susceptibility to M. incognita but had no effect on H. schachtii parasitism. The results suggest that fundamental differences in the mechanisms of infection by beet-cyst and root-knot nematodes differentially regulate PR protein production and mobilization within susceptible host plants.
ISSN
1464-6722
URI
https://hdl.handle.net/10371/172002
DOI
https://doi.org/10.1111/j.1364-3703.2010.00675.x
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Chemistry (화학부)Journal Papers (저널논문_화학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse