Publications

Detailed Information

The Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the COR/RD Genes

DC Field Value Language
dc.contributor.authorYang, So-Dam-
dc.contributor.authorSeo, Pil Joon-
dc.contributor.authorYoon, Hye-Kyung-
dc.contributor.authorPark, Chung-Mo-
dc.date.accessioned2021-01-31T08:21:15Z-
dc.date.available2021-01-31T08:21:15Z-
dc.date.created2018-01-10-
dc.date.issued2011-06-
dc.identifier.citationPlant Cell, Vol.23 No.6, pp.2155-2168-
dc.identifier.issn1040-4651-
dc.identifier.other13980-
dc.identifier.urihttps://hdl.handle.net/10371/172032-
dc.description.abstractLeaf aging is a highly regulated developmental process, which is also influenced profoundly by diverse environmental conditions. Accumulating evidence in recent years supports that plant responsiveness to abiotic stress is intimately related with leaf longevity. However, molecular mechanisms underlying the signaling crosstalks and regulatory schemes are yet unknown. In this work, we demonstrate that an abscisic acid (ABA)-responsive NAC transcription factor VND-INTERACTING2 (VNI2) integrates ABA-mediated abiotic stress signals into leaf aging by regulating a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes. The VNI2 gene was induced by high salinity in an ABA-dependent manner. In addition, spatial and temporal expression patterns of the VNI2 gene are correlated with leaf aging and senescence. Accordingly, leaf aging was delayed in transgenic plants overexpressing the VNI2 gene but significantly accelerated in a VNI2-deficient mutant. The VNI2 transcription factor regulates the COR and RD genes by binding directly to their promoters. Notably, transgenic plants overexpressing the COR or RD genes exhibited prolonged leaf longevity. These observations indicate that the VNI2 transcription factor serves as a molecular link that integrates plant responses to environmental stresses into modulation of leaf longevity.-
dc.language영어-
dc.publisherAmerican Society of Plant Biologists-
dc.titleThe Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the COR/RD Genes-
dc.typeArticle-
dc.contributor.AlternativeAuthor박충모-
dc.identifier.doi10.1105/tpc.111.084913-
dc.citation.journaltitlePlant Cell-
dc.identifier.wosid000293224200012-
dc.identifier.scopusid2-s2.0-79960879251-
dc.citation.endpage2168-
dc.citation.number6-
dc.citation.startpage2155-
dc.citation.volume23-
dc.identifier.sci000293224200012-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorSeo, Pil Joon-
dc.contributor.affiliatedAuthorPark, Chung-Mo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSTEM-CELL REGULATION-
dc.subject.keywordPlusSTRESS RESISTANCE-
dc.subject.keywordPlusCAENORHABDITIS-ELEGANS-
dc.subject.keywordPlusFREEZING TOLERANCE-
dc.subject.keywordPlusHIGH SALINITY-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusRT-PCR-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusTHALIANA-
dc.subject.keywordPlusPROTEIN-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share