Publications

Detailed Information

High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films

DC Field Value Language
dc.contributor.authorKang, Junmo-
dc.contributor.authorKim, Donggyun-
dc.contributor.authorKim, Youngsoo-
dc.contributor.authorChoi, Jae-Boong-
dc.contributor.authorHong, Byung Hee-
dc.contributor.authorKim, Sang Woo-
dc.date.accessioned2021-01-31T08:26:03Z-
dc.date.available2021-01-31T08:26:03Z-
dc.date.created2018-09-04-
dc.date.issued2017-06-
dc.identifier.citation2D Materials, Vol.4 No.2, p. 025003-
dc.identifier.issn2053-1583-
dc.identifier.other50151-
dc.identifier.urihttps://hdl.handle.net/10371/172110-
dc.description.abstractUltra-thin and transparent electromagnetic interference (EMI) shielding and absorbing materials are in increasing demand for near-field electromagnetic wave attenuation in transparent electronic devices that get thinner and lighter. Here, we report chemical-doped and undoped graphene as the thinnest and transparent shield for high-performance near-field electromagnetic wave attenuation. The electromagnetic loss characterization demonstrate that a single layer graphene film exhibits a giant magnetic field transmission loss normalized to the film thickness that is at least two orders of magnitude higher than those of conventional EMI shielding and absorbing materials, which is attributed to the outstanding magnetic field mirroring in graphene. The doped and double-layer graphene films exhibit superior power and transmission losses than the commercial transparent indium tin oxide shield over the frequency range from 0.1 GHz to 6 GHz. The high-performance near-field electromagnetic wave attenuation in graphene enables broad range applications such as futuristic transparent display devices.-
dc.language영어-
dc.publisherInstitute of Physics Publishing (IOP)-
dc.titleHigh-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films-
dc.typeArticle-
dc.contributor.AlternativeAuthor홍병희-
dc.identifier.doi10.1088/2053-1583/aa533c-
dc.citation.journaltitle2D Materials-
dc.identifier.wosid000393976000003-
dc.identifier.scopusid2-s2.0-85021135765-
dc.citation.number2-
dc.citation.startpage025003-
dc.citation.volume4-
dc.identifier.sci000393976000003-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHong, Byung Hee-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSHIELDING EFFECTIVENESS-
dc.subject.keywordPlusGIGAHERTZ FREQUENCY-
dc.subject.keywordPlusLIGHTWEIGHT-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusPAPER-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorelectromagnetic wave attenuation-
dc.subject.keywordAuthorEMI shielding and absorbing-
dc.subject.keywordAuthorchemical doping-
dc.subject.keywordAuthortransmission loss-
dc.subject.keywordAuthorpower loss-
dc.subject.keywordAuthortransparent conductivie shields-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share