Publications
Detailed Information
Graphene-Ferroelectric Hybrid Structure for Flexible Transparent Electrodes
Cited 161 time in
Web of Science
Cited 175 time in Scopus
- Authors
- Issue Date
- 2012-05
- Publisher
- American Chemical Society
- Citation
- ACS Nano, Vol.6 No.5, pp.3935-3942
- Abstract
- Graphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3 x 10(13) cm(-2) by nonvolatile ferroelectric dipoles, yielding a low sheet resistance of 120 Omega/square at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near-infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness, and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route toward large-scale graphene-based transparent electrodes and optoelectronics.
- ISSN
- 1936-0851
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.