Browse
UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering
- Authors
- Huh, Sung; Park, Jaesung; Kim, Young Soo; Kim, Kwang S.; Hong, Byung Hee; Nam, Jwa-Min
- Issue Date
- 2011-12
- Citation
- ACS Nano, Vol.5 No.12, pp.9799-9806
- Keywords
- graphene; oxidized graphene; ozone; surface-enhanced Raman scattering; chemical enhancement
- Abstract
- We fabricated a highly oxidized large-scale graphene platform using chemical vapor deposition (CVD) and UV/ozone-based oxidation methods. This platform offers a large-scale surface-enhanced Raman scattering (SERS) substrate with large chemical enhancement in SERS and reproducible SEAS signals over a centimeter-scale graphene surface. After UV-induced ozone generation, ozone molecules were reacted with graphene to produce oxygen-containing groups on graphene and induced the p-type doping of the graphene. These modifications introduced the structural disorder and defects on the graphene surface and resulted in a large chemical mechanism-based signal enhancement from Raman dye molecules [rhodamine B (RhB), rhodamine 6G (R6G), and crystal violet (CV) in this case] on graphene. Importantly, the enhancement factors were increased from similar to 10(3) before ozone treatment to similar to 10(4), which is the largest chemical enhancement factor ever on graphene, after 5 min ozone treatment due to both high oxidation and p-doping effects on graphene surface. Over a centimeter-scale area of this UV/ozone-oxidized graphene substrate, strong SERS signals were repeatedly and reproducibly detected. In a UV/ozone-based micropattern, UV/ozone-treated areas were highly Raman-active while nontreated areas displayed very weak Raman signals.
- ISSN
- 1936-0851
- Files in This Item: There are no files associated with this item.
- Appears in Collections:
- College of Natural Sciences (자연과학대학)Dept. of Chemistry (화학부)Journal Papers (저널논문_화학부)
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.