Publications

Detailed Information

Nanoscale direct mapping of noise source activities on graphene domains

DC Field Value Language
dc.contributor.authorLee, Hyungwoo-
dc.contributor.authorCho, Duckhyung-
dc.contributor.authorShekhar, Shashank-
dc.contributor.authorKim, Jeongsu-
dc.contributor.authorPark, Jaesung-
dc.contributor.authorHong, Byung Hee-
dc.contributor.authorHong, Seunghun-
dc.date.accessioned2021-01-31T08:26:50Z-
dc.date.available2021-01-31T08:26:50Z-
dc.date.created2018-08-29-
dc.date.created2018-08-29-
dc.date.created2018-08-29-
dc.date.issued2016-11-
dc.identifier.citationACS Nano, Vol.10 No.11, pp.10135-10142-
dc.identifier.issn1936-0851-
dc.identifier.other48383-
dc.identifier.urihttps://hdl.handle.net/10371/172123-
dc.description.abstractAn electrical noise is one of the key parameters determining the performance of modern electronic devices. However, it has been extremely difficult, if not impossible, to image localized noise sources or their activities in such devices. We report a "noise spectral imaging" strategy to map the activities of localized noise sources in graphene domains. Using this method, we could quantitatively estimate sheet resistances and noise source densities inside graphene domains, on domain boundaries and on the edge of graphene. The results show high activities of noise sources and large sheet resistance values at the domain boundary and edge of graphene. Additionally, we showed that the top layer in double layer graphene had lower noises than single-layer graphene. This work provides valuable insights about the electrical noises of graphene. Furthermore, the capability to directly map noise sources in electronic channels can be a major breakthrough in electrical noise research in general.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleNanoscale direct mapping of noise source activities on graphene domains-
dc.typeArticle-
dc.contributor.AlternativeAuthor홍병희-
dc.identifier.doi10.1021/acsnano.6b05288-
dc.citation.journaltitleACS Nano-
dc.identifier.wosid000388913100042-
dc.identifier.scopusid2-s2.0-84997113392-
dc.citation.endpage10142-
dc.citation.number11-
dc.citation.startpage10135-
dc.citation.volume10-
dc.identifier.sci000388913100042-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHong, Byung Hee-
dc.contributor.affiliatedAuthorHong, Seunghun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLOW-FREQUENCY NOISE-
dc.subject.keywordPlus1/F NOISE-
dc.subject.keywordPlusMOS-TRANSISTORS-
dc.subject.keywordPlusELECTRONIC-PROPERTIES-
dc.subject.keywordPlusGRAIN-BOUNDARIES-
dc.subject.keywordPlusTRAP DENSITY-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordAuthorlow-frequency noise-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorfinite element method-
dc.subject.keywordAuthornoise imaging-
dc.subject.keywordAuthoratomic force microscopy-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Nanofabrication and characterization, Nanomaterials Synthesis, Quantum mechanics and molecular dynamics simulation, 나노재료 합성, 나노제조 및 특성화, 양자역학 및 분자역학 시뮬레이션

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share