Publications

Detailed Information

Laser-Induced Solid-Phase Doped Graphene

Cited 48 time in Web of Science Cited 51 time in Scopus
Authors

Choi, Insung; Jeong, Hu Young; Jung, Dae Yool; Byun, Myunghwan; Choi, Choon-Gi; Hong, Byung Hee; Choi, Sung-Yool; Lee, Keon Jae

Issue Date
2014-08
Publisher
American Chemical Society
Citation
ACS Nano, Vol.8 No.8, pp.7671-7677
Abstract
There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide (SiC) substrate including a dopant source driven by pulsed laser irradiation. This method provides in situ direct growth of doped graphene on an insulating SiC substrate without a transfer step. A numerical simulation on the temperature history of the SiC surface during laser irradiation reveals that the surface temperature of SiC can be accurately controlled to grow nitrogen doped graphene from the thermal decomposition of nitrogen doped SiC. Laser induced solid phase doped graphene is highly promising for the realization of graphene-based nanoelectronics with desired functionalities.
ISSN
1936-0851
URI
https://hdl.handle.net/10371/172130
DOI
https://doi.org/10.1021/nn5032214
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share