Browse

Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors

Cited 69 time in Web of Science Cited 71 time in Scopus
Authors
Choi, Kyoungjun; Nam, Sooji; Lee, Youngbin; Lee, Mijin; Jang, Jaeyoung; Kim, Sang Jin; Jeong, Yong Jin; Kim, Hyeongkeun; Bae, Sukang; Yoo, Ji-Beom; Cho, Sung M.; Choi, Jae-Boong; Chung, Ho Kyoon; Ahn, Jong-Hyun; Park, Chan Eon; Hong, Byung Hee
Issue Date
2015-06
Citation
ACS Nano, Vol.9 No.6, pp.5818-5824
Keywords
graphene barrierwater vapor transmittance rateOFETsbending cycles
Abstract
Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 x 10 cm(2) large-area graphene films synthesized by chemical vapor deposition (ND). The WVTR was measured to be as low as 10(-4) g/m(2). day initially, and stabilized at similar to 0.48 g/m(2). day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene's potential as gas barriers for organic electronics.
ISSN
1936-0851
URI
https://hdl.handle.net/10371/172141
DOI
https://doi.org/10.1021/acsnano.5b01161
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Chemistry (화학부)Journal Papers (저널논문_화학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse