Publications
Detailed Information
Graphene-enhanced raman spectroscopy reveals the controlled photoreduction of nitroaromatic compound on oxidized graphene surface
Cited 5 time in
Web of Science
Cited 6 time in Scopus
- Authors
- Issue Date
- 2018-09
- Publisher
- American Chemical Society
- Citation
- ACS Omega, Vol.3 No.9, pp.11084-11087
- Abstract
- Although graphene-enhanced Raman spectroscopy has been investigated for several years, there have been no studies that have applied it to real-time observations of chemical catalytic reactions. Here, we report that UV/ozone-treated oxidized graphene was used to both control and monitor the photoreduction of an adsorbed nitroaromatic dye compound. Graphene-enhanced Raman spectroscopy studies show that more oxidized graphene surface leads to faster photoreduction. This is due to the lowering of the Fermi level in the oxidized graphene, which is in agreement with the highest occupied molecular orbital level of the adsorbed dye molecule, leading to a rapid electron transfer from graphene to the dye. Our findings will be useful in understanding and exploiting the photocatalytic properties of oxidized graphene on adsorbed molecular species.
- ISSN
- 2470-1343
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.